scholarly journals Identification of wild-type and mutant p53 peptides binding to HLA-A2 assessed by a peptide loading-deficient cell line assay and a novel major histocompatibility complex class I peptide binding assay

1994 ◽  
Vol 24 (3) ◽  
pp. 765-768 ◽  
Author(s):  
György Stuber ◽  
Gerhard H. Leder ◽  
Walter J. Storkus ◽  
Michael T. Lotze ◽  
Susanne Modrow ◽  
...  
1995 ◽  
Vol 181 (2) ◽  
pp. 677-683 ◽  
Author(s):  
A Sette ◽  
S Southwood ◽  
J Miller ◽  
E Appella

Major histocompatibility complex class II-associated invariant chain (Ii) provides several important functions that regulate class II expression and function. One of these is the ability to inhibit class II peptide loading early in biosynthesis. This allows for efficient class II folding and egress from the endoplasmic reticulum, and protects the class II peptide binding site from loading with peptides before entry into endosomal compartments. The ability of Ii to interact with class II and interfere with peptide loading has been mapped to Ii exon 3, which encodes amino acids 82-107. This same region of Ii has been described as a nested set of class II-associated Ii peptides (CLIPs) that are transiently associated with class II in normal cells and accumulate in human histocompatibility leukocyte antigen-DM-negative cell lines. Currently it is not clear how CLIP and the CLIP region of Ii blocks peptide binding. CLIP may bind directly to the class II peptide binding site, or may bind elsewhere on class II and modulate class II peptide binding allosterically. In this report, we show that CLIP can interact with many different murine and human class II molecules, but that the affinity of this interaction is controlled by polymorphic residues in the class II chains. Likewise, structural changes in CLIP also modulate class II binding in an allele-dependent manner. Finally, the specificity and kinetics of CLIP binding to class II molecule is similar to antigenic peptide binding to class II. These data indicate that CLIP binds to class II in an analogous fashion as conventional antigenic peptides, suggesting that the CLIP segment of Ii may actually occupy the class II peptide binding site.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5504-5514 ◽  
Author(s):  
Pavel N. Pichurin ◽  
Gregorio D. Chazenbalk ◽  
Holly Aliesky ◽  
Oxana Pichurina ◽  
Basil Rapoport ◽  
...  

Abstract Naked DNA vaccination with the TSH receptor (TSHR) does not, in most studies, induce TSHR antibodies and never induces hyperthyroidism in BALB/c mice. Proteins expressed endogenously by vaccination are preferentially presented by major histocompatibility complex class I, but optimal T cell help for antibody production requires lysosomal processing and major histocompatibility complex class II presentation. To divert protein expression to lysosomes, we constructed a plasmid with the TSHR ectodomain spliced between the signal peptide and transmembrane-intracellular region of lysosome-associated membrane protein (LAMP)-1, a lysosome-associated membrane protein. BALB/c mice pretreated with cardiotoxin were primed intramuscularly using this LAMP-TSHR chimera and boosted twice with DNA encoding wild-type TSHR, TSHR A-subunit, or LAMP-TSHR. With each protocol, spleen cells responded to TSHR antigen by secreting interferon-γ, and 60% or more mice had TSHR antibodies detectable by ELISA. TSH binding inhibitory activity was present in seven, four, and two of 10 mice boosted with TSHR A-subunit, LAMP-TSHR, or wild-type TSHR, respectively. Importantly, six of 30 mice had elevated T4 levels and goiter (5 of 6 with detectable thyroid-stimulating antibodies). Injecting LAMP-TSHR intradermally without cardiotoxin pretreatment induced TSHR antibodies detectable by ELISA but not by TSH binding inhibitory activity, and none became hyperthyroid. These findings are consistent with a role for cardiotoxin-recruited macrophages in which (unlike in fibroblasts) LAMP-TSHR can be expressed intracellularly and on the cell surface. In conclusion, hijacking the TSHR to lysosomes enhances T cell responses and TSHR antibody generation and induces Graves’-like hyperthyroidism in BALB/c mice by intramuscular naked DNA vaccination.


2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sumit Middha ◽  
Rona Yaeger ◽  
Jinru Shia ◽  
Zsofia K. Stadler ◽  
Sarah King ◽  
...  

PURPOSE Microsatellite instability-high (MSI-H) colorectal carcinomas (CRCs) show high rates of response to immune checkpoint inhibitors (IOs). B2M mutations and protein loss have been proposed as causes of resistance to IOs, yet they are enriched in MSI-H CRC. We aimed to characterize B2M-mutant, IO-naive CRC. PATIENTS AND METHODS All CRCs with results for Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets, a next-generation sequencing assay that interrogates > 400 genes for mutations as well as MSI status, were surveyed for B2M mutations. All B2M-mutant CRCs were assessed for expression of B2M, major histocompatibility complex class I, and programmed death-1 ligand (PD-L1) via immunohistochemistry and average CD3+ and CD8+ tumor-infiltrating lymphocyte counts against a control group of MSI-H B2M wild-type CRCs. RESULTS Fifty-nine (3.4%) of 1,751 patients with CRC harbored B2M mutations, with 84% (77 of 92) of the mutations predicted to be truncating. B2M mutations were significantly enriched in MSI-H CRCs, with 44 (24%) of 182 MSI-H CRCs harboring B2M mutations ( P < .001). Thirty-two of 44 B2M-mutant CRCs with available material (73%) had complete loss of B2M expression, whereas all 26 CRCs with wild-type B2M retained expression ( P < .001). B2M mutation status was not associated with major histocompatibility complex class I expression, KRAS or BRAF mutation, tumor-infiltrating lymphocyte level, or PD-L1 expression after adjustment for MSI status. Of 13 patients with B2M-mutant CRC who received programmed death-1 or PD-L1 IOs, 11 (85%) achieved clinical benefit, defined as stable disease or partial response using Response Evaluation Criteria in Solid Tumors criteria. CONCLUSION B2M mutations occur in approximately 24% of MSI-H CRCs and are usually associated with loss of B2M expression. Most patients with B2M-mutant MSI-H CRC with loss of protein expression obtain clinical benefit from IOs.


2002 ◽  
Vol 70 (1) ◽  
pp. 380-388 ◽  
Author(s):  
Roman Reddy Ganta ◽  
Melinda J. Wilkerson ◽  
Chuanmin Cheng ◽  
Aaron M. Rokey ◽  
Stephen K. Chapes

ABSTRACT Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for ≥30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4+ T cells, are critical for conferring resistance to E. chaffeensis.


Sign in / Sign up

Export Citation Format

Share Document