Solid–liquid Phase Behaviors of Binary Mixtures of Various Partial Acylglycerols by Differential Scanning Calorimetry

Author(s):  
Latifa Seniorita ◽  
Eiji Minami ◽  
Haruo Kawamoto
2019 ◽  
Vol 497 ◽  
pp. 19-32 ◽  
Author(s):  
Fernanda Paludetto Pelaquim ◽  
Flávio Cardoso de Matos ◽  
Lisandro Pavie Cardoso ◽  
Eduardo Augusto Caldas Batista ◽  
Antonio José de Almeida Meirelles ◽  
...  

1996 ◽  
Vol 274 ◽  
pp. 231-242 ◽  
Author(s):  
H.E. Gallis ◽  
F. Bougrioua ◽  
H.A.J. Oonk ◽  
P.J. van Ekeren ◽  
J.C. van Miltenburg

2001 ◽  
Vol 71 (3) ◽  
pp. 507-515
Author(s):  
Daniela Gheorghe ◽  
Ana Neacsu ◽  
Stefan Perisanu

A new value of the enthalpy of formation of cyclooctane (-156.2�1.2 kJ mol-1) based on heat of combustion measurements is reported. Its solid - liquid phase change was investigated by differential scanning calorimetry in both directions revealing an overcooling effect of over 23 K. Our enthalpy of formation of cyclooctane was used together with literature values of heats of hydrogenation of 8 carbon atoms cycloolefins to calculate the enthalpies of formation of the later. The strain energies of the investigated molecules were calculated and discussed.


2019 ◽  
Vol 24 (1) ◽  
pp. 11-16
Author(s):  
Sunyhik Ahn ◽  
Thomas R. Forder ◽  
Matthew D. Jones ◽  
Richard A. R. Blackburn ◽  
Paul S. Fordred ◽  
...  

AbstractExploratory experiments on effects from a phase transition are reported for a low-melting microcrystalline anthraquinone (N,N,N′,N′-tetraoctyl-2,6-diamino-9,10-anthraquinone or TODAQ). Data for the solid-liquid phase transition are obtained by differential scanning calorimetry and then compared to data obtained by voltammetry. In preliminary electrochemical measurements, microcrystal deposits on a basal plane pyrolytic graphite electrode are shown to undergo a solid-state 2-electron 2-proton reduction in contact to aqueous 0.1 M HClO4 with a midpoint potential Emid,solid = − 0.24 V vs. SCE. The reduction mechanism is proposed to be limited mainly by the triple phase boundary line and some transport of TODAQ molecules towards the electrode surface for both solid and melt. A change in the apparent activation energy for this reduction is observed at 69 °C, leading to an enhanced increase in reduction current with midpoint potential Emid,liquid = − 0.36 V vs. SCE. A change of TODAQ transport along the crystal surface for solid microcrystalline material (for the solid) to diffusion within molten microdroplets (for the liquid) is proposed. Upon cooling, a transition at 60 °C back to a higher apparent activation energy is seen consistent with re-solidification of the molten phase at the electrode surface. Differential scanning calorimetry data for solid TODAQ dry and for TODAQ in contact to aqueous 0.1 M HClO4 confirm these transitions.


2019 ◽  
Vol 137 (6) ◽  
pp. 2017-2028 ◽  
Author(s):  
Larissa Castello Branco Almeida Bessa ◽  
Maria Dolores Robustillo ◽  
Antonio José de Almeida Meirelles ◽  
Pedro de Alcântara Pessôa Filho

Sign in / Sign up

Export Citation Format

Share Document