scholarly journals Thin carbon–polypyrrole composite materials for supercapacitor electrodes by novel bipolar electrochemical setup

2021 ◽  
pp. 2100153
Author(s):  
Nigel Patterson ◽  
Anna Ignaszak
Biomaterials ◽  
2010 ◽  
Vol 31 (23) ◽  
pp. 5916-5926 ◽  
Author(s):  
M. Brett Runge ◽  
Mahrokh Dadsetan ◽  
Jonas Baltrusaitis ◽  
Andrew M. Knight ◽  
Terry Ruesink ◽  
...  

2017 ◽  
Vol 5 (36) ◽  
pp. 19184-19194 ◽  
Author(s):  
Erlantz Lizundia ◽  
Thanh-Dinh Nguyen ◽  
Jose L. Vilas ◽  
Wadood Y. Hamad ◽  
Mark J. MacLachlan

Conductive chiral nematic cellulose composite materials have been fabricated via in situ oxidative chemical polymerization of pyrrole onto surface-modified mesoporous cellulose nanocrystal (CNC) films.


2021 ◽  
Author(s):  
Shiyun Li ◽  
Ling Zhang ◽  
Luxi Zhang ◽  
Yuqiong Guo ◽  
Xuecheng Chen ◽  
...  

Although Fe3O4 has high capacity, the low conductivity and poor cycle stability have limited its application in supercapacitor. To address this issue, the core-shell structured Fe3O4@polypyrrole (Fe3O4@PPy) composite materials could...


Author(s):  
О. О. Бутенко ◽  
О. В. Черниш ◽  
В. Г. Хоменко ◽  
В. С. Твердохліб ◽  
В. З. Барсуков

The use of nanomaterials as a composite material to improve the efficiency of a protective coating for shielding against electromagnetic interference. Samples were studied using equipment from Keycom Corp. (Japan) developed for measuring the shielding effect. Ultrasonic dispersion of nanomaterials was performed using a UZDN-A1200T ultrasonic disperser. The resistivity of the composite coatings was measured using a ST2558B-F01 standardized 4-electrode cell. The influence of various nanomaterials on the protective properties of thin carbon-polymer coatings has been established. The following nanomaterials have been investigated: boron oxide and carbide, iron oxide, carbon nanotubes, and graphene. The dependence of the resistivity of the coating and the shielding effect on the type of nanomaterial in the composite sample has been established. It has been experimentally proved that the ultrasonic dispersion can improve the shielding effect by 2.5 times. It has been found that graphene has a slight advantage compared to other carbon materials. Also, our results have been established that non-conductive materials such as nano-oxides of iron, boron, and boron carbide can be quite effective for creating radio-absorbing composite materials. The paper proposes a new approach to obtain thin protective coatings against electromagnetic radiation using nanomaterials such as boron carbide, boron oxide, iron oxide, some types of carbon nanotubes, and graphene. The paper proposes a unique algorithm for the ultrasonic dispersion of nanomaterials for the manufacture of composite materials. For the first time, an analysis of the shielding effect of coatings based on domestic materials using international standardized research methods has been carried out. Composite coatings can primarily be used to protect humans from electromagnetic radiation. The materials can be widely used to solve the problems of shielding premises, equipment, in the military, and medical industries.


2017 ◽  
Vol 730 ◽  
pp. 37-41 ◽  
Author(s):  
Hui Li Cao ◽  
Yuan Chang Shi ◽  
Hao Shen ◽  
Hu Dong Zhan ◽  
Jiu Rong Liu

In this paper carboxylated carbon nanotubes/polypyrrole composite (CNTs/PPy) was synthesized in different surfactants aqueous under sonication. Carboxylated CNTs was synthesized in hydrogen nitrate by ultrasonic method and coated by PPy. The synthesized CNTs/PPy in different surfactants was evaluated by Fourier transform infrared spectrometer (FT-IR) and transmission electron microscope. The FT-IR patterns illustrate that CNTs were successfully doped by PPy. The morphology of CNTs/PPy synthesized showed on the transmission electron microscope images. The composite materials sythesized without surfactant are easy reunited. It is also found the surface of CNTs/PPy synthesized in cetyl trimethyl ammonium bromide (CTAB) is smoother than that in other surfactants. The coating effect is better with thicker coating layer. The higher magnification of HRTEM images show the PPy was deposited directly on the surface of carbon nanotubes. The final products are the ordered coaxial composite with well-defined core-shell structure.


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


Sign in / Sign up

Export Citation Format

Share Document