Engineering Nanostructured Silicon and its Practical Applications in Lithium‐Ion Batteries: A Critical Review

2021 ◽  
Author(s):  
Xuefan Zhang ◽  
Hebang Shi ◽  
Pengpeng Lv ◽  
Jinyun Liu ◽  
Huigang Zhang
Author(s):  
Yuanyuan Yu ◽  
Jiadeng Zhu ◽  
Ke Zeng ◽  
Mengjin Jiang

Abstract text goes here. The abstract should be a single paragraph that summarises the content of the article Compared with nanostructured silicon (Si), Si microparticle (SiMP) has more commercial prospects...


2021 ◽  
Vol 7 ◽  
pp. 5562-5574 ◽  
Author(s):  
Shunli Wang ◽  
Siyu Jin ◽  
Dekui Bai ◽  
Yongcun Fan ◽  
Haotian Shi ◽  
...  

2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ahmed Alahmed ◽  
Emel Ceyhun Sabır

: The electrodes are the basis for building flexible lithium-ion batteries (FLIBs), and many attempts have been made to develop flexible electrodes with high efficiency in terms of electrical conductivity, chemical and mechanical properties. Most studies showed relatively satisfactory results when testing the electrochemical properties of laboratory-produced electrodes, but most of these electrodes could not meet the expected requirements of flexible electrodes in practical applications. Quantitative production faces many problems that must be overcome, such as the gradual decline in electrochemical performance, deformation of the electrode structure, high production costs, and difficulties in the production process itself. In this research, developments in the production of flexible electrodes, especially those that depend on carbon materials and metal nanoparticles, will be discussed and summarized in this research. The electrochemical performance and stability of the produced flexible electrodes will be compared. The factors contributing to the progress in the production of flexible lithium-ion batteries will also be discussed.


2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


2019 ◽  
Vol 19 (6) ◽  
pp. 3610-3615 ◽  
Author(s):  
Lifeng Wang ◽  
Kaiyuan Wei ◽  
Pengjun Zhang ◽  
Hong Wang ◽  
Xiujun Qi ◽  
...  

Potassium-ion batteries (PIBs), as one of the alternatives to lithium-ion batteries (LIBs), have attracted considerable attention on account of the affluence and low-cost of potassium. Moreover, CoC2O4 and graphene oxide (GO) have been used very well in lithium-ion batteries. Hence, the hybrid CoC2O4/GO was investigated as a new anode material for PIBs. The hybrid CoC2O4/GO was synthesized by a facile and cheap method combined with supersonic dispersion. Electrochemical measurements reveal that the hybrid CoC2O4/GO delivered an excellent cycling stability of 166 mAh g−1 at 50 mA g−1 and a superior rate capability even at 1 A g−1. These results demonstrate although the cycle ability was insufficient for practical applications, transition-metal oxalates composites can still bring new hope to the development of PIBs.


2015 ◽  
Vol 26 (5) ◽  
pp. 647-678 ◽  
Author(s):  
Md. Arafat Rahman ◽  
Guangsheng Song ◽  
Anand I. Bhatt ◽  
Yat Choy Wong ◽  
Cuie Wen

2018 ◽  
Vol 6 (2) ◽  
pp. 1504-1521 ◽  
Author(s):  
Weiguang Lv ◽  
Zhonghang Wang ◽  
Hongbin Cao ◽  
Yong Sun ◽  
Yi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document