Assessment of heavy metal pollution in sediments of the Sonora River basin impacted by mining activities

Author(s):  
G. J. León‐García ◽  
A. Gómez‐Álvarez ◽  
D. M. Meza‐Figueroa ◽  
J. L. Valenzuela‐García ◽  
M. A. Encinas‐Romero ◽  
...  
2020 ◽  
Vol 7 (2) ◽  
pp. 198
Author(s):  
Oluwafunso Oladipo Awosusi ◽  
Adeshina Luqman Adisa

Heavy metal pollution has been a source of health problems in humans. These metals are persistent, toxic, non-degradable and often take a long time to be eliminated from the body. This study is, therefore, designed to assess heavy metal pollution of River Basin in Nigeria. Seventy stream sediment samples were systematically collected from an area, approximately 400km2, latitude 7O 00’ and 7O 15’N and longitude 5O 11’ and 5O 19’E. The pollution status of the sediments by heavy metals were assessed by Enrichment Factor (EF), Pollution Load Index (PLI) and Geo-accumulation Index (Igeo). The concentrations of the heavy metals were also compared with United States Environmental Protection Agency (USEPA) Sediment quality guidelines (SQG). The samples were dried in the laboratory, disaggregated, sieved to minus 80 (<177 microns) mesh size using nylon sieve. The sieved samples were, then, digested and the concentrations of As, Co, Fe, Mn, Ni, Pb, V and Zn were determined by Wavelength Dispersive X-ray Fluorescence Spectrometry (WD-XRFS). Results revealed that the mean concentrations of the heavy metals are in the order V>Zn>Pb>As>Ni>Co>Fe>Mn. Furthermore, the mean concentration of lead exceeded both the average world shale and the USEPA SQG values. However, the mean concentration of cobalt, nickel, manganese and zinc were lower than the average world shale values for these elements. The Enrichment Factor (EF) revealed that cobalt was moderately enriched while arsenic and lead were significantly enriched in the sediments. On the basis of the geoaccumulation index, the stream sediments were largely uncontaminated except at some sites that were moderately to strongly contaminated by As and Pb.  


2006 ◽  
Vol 178 (1-4) ◽  
pp. 335-349 ◽  
Author(s):  
A. M. Gagneten ◽  
S. Gervasio ◽  
J. C. Paggi

Author(s):  
Mahsa Jahangiri-rad ◽  
Mohsen Shariati ◽  
Mahdieh Yaaghoubi ◽  
Ali Haghmoradkhani ◽  
Abbas Akbarzadeh

Introduction: Inappropriate management of mining activities may bring about water pollution and pose a heavy complication on aquatic ecosystem and humans. The study aimed to evaluate the effect of Qorveh gold mining activities on the quality of nearby groundwater. Materials and Methods: The concentration of seven eco-toxic metals along with some general hydrochemical parameters were investigated for 27 sampling stations in the study area using Atomic Absorption Spectrometry (AAS) and conventional hydrochemical methods. The analysis results were further applied to compute pollution indices, namely heavy metal pollution index (HPI) for irrigation purposes. Results: The main elements were within the World Health Organization (WHO) and Iranian National Water Standards (INWS) for irrigation water quality, except for NH4+ in some sampling points. The concentration of heavy metals followed the order Cu > Zn > Pb > Hg > Cd > As. The contents of Hg, As, Cd, and Cu in most sites were higher than the recommended values. Except for two stations, the value of HPI based on the mean concentration was found to be far beyond the critical pollution index value of 100, suggesting that the area is highly polluted with some heavy metals. Conclusion: Elevated concentration of trace elements found in groundwater of this area represented the release of harmful elements from gold mining activities on surrounding environment.


2017 ◽  
Vol 44 (1) ◽  
pp. 108-117
Author(s):  
N. Ramazanova ◽  
◽  
S. Toksanbaeva ◽  
Z. Auyezova ◽  
◽  
...  

2021 ◽  
Author(s):  
Suantak Paolalsiam Vaiphei ◽  
Rama Mohan Kurakalva

Abstract The present study is to characterize groundwater quality using heavy metal pollution indices and geospatial variations. A total of 58 samples from hand pump/submersible bore wells were collected from the Wanaparthy watershed of the upper Krishna River basin according to the grid size (5*6 km 2 ). The heavy metals concentration in groundwater samples are found in the order of Zn(38.67%)> B(32.67%)> Ba(13.59%)> As(8.49%)> Hg(3.71%)> Cr(1.28%)> Ni(0.52%)> Cd(0.47%). Among these heavy metals, arsenic (22.4%) and mercury (5.1%) were found above the permissible limits of WHO drinking water guideline values. A positive correlation between pH versus B/Ba/Hg, TH versus EC/TDS, and B versus Ba indicates the presence of metals due to chemical reaction (rock-water interaction). Arsenic correlation with EC/TDS/TH indicates artificial intervention. Drainage network analysis enumerates high concentration of parameters at near or joining to upper order of drainage system, which might be due to input of runoff water (interaction of variable rocks composition) and later stage infiltration to subsurface and reached to an aquifer. Heavy metal pollution index (HPI) showed 86.2% of samples are in the category of low class, whereas 12.1% of samples fall within medium class. According to metal index (MI) classification, 12.1% samples are in very pure, 24.14% samples are pure, while the remaining 63.8% samples are in the slightly to strongly affect category. This study suggested the main source of heavy metals in groundwater might be from the dominant granitoid rocks because the area is mostly devoid of industrialization.


Sign in / Sign up

Export Citation Format

Share Document