scholarly journals An efficient performance-based seismic design method for reinforced concrete frames

2011 ◽  
Vol 41 (4) ◽  
pp. 663-679 ◽  
Author(s):  
Iman Hajirasouliha ◽  
Payam Asadi ◽  
Kypros Pilakoutas
2021 ◽  
pp. 102963
Author(s):  
Wongsa Wararuksajja ◽  
Jarun Srechai ◽  
Sutat Leelataviwat ◽  
Trirat Sungkamongkol ◽  
Suchart Limkatanyu

2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2011 ◽  
Vol 243-249 ◽  
pp. 204-208
Author(s):  
Wei Guo Jiang

In performance-based seismic design method, it is very important to have a good command of the nonlinear performance of a structural system, including in the collapse stage. In this paper, a nonlinear finite-element analysis on reinforced concrete moment frames is carried out. After studying the forces and deformations behavior in beam-column elements, the element stiffness matrix of distributed plasticity beam-column element is deduced using the Cotes scheme with 5 integration points. During the occurrence and development of plastic hinges, sections at some integration points will experience loading, unloading and reverse loading and the stiffness of these sections will experience various status. A quadrilinear form moment-curvature relationships with curvature- softening behavior and the hysteretic modes are used in the nonlinear static analysis program. The numerical analysis is carried out and the numerical results validate the load-displacement relationships and the yield mechanism of experiment frames.


Author(s):  
J.D.R. Byrne ◽  
D.K. Bull

Shortcomings of modern seismic design in reinforced concrete have necessitated the development of new systems capable of addressing these issues. Able to be constructed using existing industry techniques, the slotted beam is one such practicable, economic solution. While earlier research by Au (2010) showed promising results for this system, it also highlighted issues with bond of beam reinforcement within interior joints and understanding of the joint shear mechanism. This paper explains and addresses these issues through a summary of the desktop and experimental research undertaken. The results were encouraging with 2 specimens successfully tested without bar slip and minimal beam elongation.


Sign in / Sign up

Export Citation Format

Share Document