joint shear
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 45)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
pp. 136943322110509
Author(s):  
Mohammed A Sakr ◽  
Ahmad G Saad ◽  
Tamer M El-korany

This paper presents a finite element (FE) study of beam-column joints subjected to cyclic loading. This study is primarily dependent on investigating the shear behavior of joints under the influence of different column axial load ratios. Wherefore, a total range of the column axial load ratios, whether in tension or compression has been considered. This paper proposes a two-dimensional (2D) FE model that considers material non-linearity. The proposed FE model was verified with experimental results from literature that tested varying column axial load ratios and different failure modes. The examination among experiential and numerical outcomes demonstrated that the FE model can reenact the conduct of beam-column joints and can catch the different failure modes with acceptable accuracy. A parametric study was established using the proposed FE model and strut-and-tie (ST) model of Pauletta to assess the Eurocode joint shear strength equations. For this purpose, four specimens were designed according to Eurocode recommendations while two other specimens were designed to satisfy all of the Eurocode recommendations except for the required joint confinement. An interaction diagram was introduced for each specimen to express the behavior under varying column axial load ratios. The results of the comparison between Eurocode, FE model, and ST model showed some differences in calculating the joint shear strength capacity, especially under column tension loads. Furthermore, this paper proposed new design equations based on Eurocode equations taking into account the column axial load effect. These proposed equations worked to increase the accuracy in calculating the joint shear strength capacity. Proposed equations were compared to the FE model results and other experimental results available in the literature. The comparison showed that the differences with the FE model decreased and that the proposed equations had better accuracy at different tension and compression loads than the Eurocode.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 562
Author(s):  
Basem S. Abdelwahed ◽  
Mosbeh R. Kaloop ◽  
Waleed E. El-Demerdash

The ductility and capacity of reinforced concrete beam-column connections depend mainly on the concrete’s strength and the provided reinforcements. This study investigates numerically the role of low-strength concrete in beam-column joints utilizing ABAQUS software. In this simulation, a newly developed stress-inelastic strain relationship for both confined and unconfined low-strength concrete is used. This study recommended a specific value of the concrete dilation angle for both substandard and standard joints. Also, stirrups’ yield strength value was found to play an insignificant role in improving the shear resistance of such joints with low-strength. In addition, the joint shear strength prediction using empirical models that implicitly consider the stirrups contribution in improving joint resistance was found to be better than the prediction of other models that explicitly consider the stirrups’ presence. The numerical results also showed that the use of a diagonal steel haunch as a joint retrofitting technique significantly increases the joint shear capacity and changes its brittle shear failure into a ductile beam flexural failure.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1819-1832
Author(s):  
Sang Ho Park ◽  
Doohyun Yoon ◽  
Sanghun Kim ◽  
Zong Woo Geem

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Jiandong Huang ◽  
Jia Zhang ◽  
Yuan Gao

Abstract To propose an effective and reasonable excavation plan for rock joints to control the overall stability of the surrounding rock mass and predict and prevent engineering disasters, this study is aimed at predicting the rock joint shear strength using the combined algorithm by the support vector regression (SVR) and firefly algorithm (FA). The dataset of rock joint shear strength collected was employed as the output of the prediction, using the joint roughness coefficient (JRC), uniaxial compressive strength (σc), normal stress (σn), and basic friction angle (φb) as the input for the machine learning. Based on the database of rock joint shear strength, the training subset and test subset for machine learning processes are developed to realize the prediction and evaluation processes. The results showed that the FA algorithm can adjust the hyperparameters effectively and accurately, obtaining the optimized SVR model to complete the prediction of rock joint shear strength. For the testing results, the developed model was able to obtain values of 0.9825 and 0.2334 for the coefficient of determination and root-mean-square error, showing the good applicability of the SVR-FA model to establish the nonlinear relationship between the input variables and the rock joint shear strength. Results of the importance scores showed that σn is the most important factor that affects the rock joint shear strength while σc has the least significant effect. As a factor influencing the shear stiffness from the perspective of physical appearance, the change of the JRC value has a significant impact on the rock joint shear strength.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ernesto Grande ◽  
Maura Imbimbo ◽  
Annalisa Napoli ◽  
Riccardo Nitiffi ◽  
Roberto Realfonzo

The study presents a numerical investigation on exterior reinforced concrete (RC) beam-column joints under seismic actions based on a macro-modelling approach proposed by the authors in a recent paper. The followed approach makes use of the well-known “scissors model” where two nonlinear rotational springs arranged in series were introduced to schematize the shear behavior of the joint panel and, moreover, the possible occurrence of the debonding of longitudinal steel rebars at the beam-joint interface. In this paper, the scissor model is employed in the context of a novel predictive approach with the twofold objective to: 1) develop a new model for the estimate of the maximum shear strength of RC joints by performing a multivariate linear regression analysis on a set of experimental tests and, 2) define a new multilinear backbone joint shear stress-strain law to be assigned to one of the mentioned springs. In particular, the identification of the shear strain parameters is obtained by performing a sensitivity analysis in which a number of monotonic load-drift numerical curves are derived by varying the strain values in ranges opportunely a-priori defined and compared with the experimental ones to investigate their accuracy. Finally, cyclic analyses on RC joints collected in the experimental database are carried out by considering the backbone joint shear stress-strain law identified in the calibration process. The analyses are performed by using the nonlinear open-source finite element platform, OpenSees, in which the “pinching4” uniaxial material model, available in the software library, is implemented to set the parameters governing the hysteresis rules and pinching effect. To this purpose, five literature proposals suggesting the values to use for such parameters are taken into account and their assessment is presented in the paper. The obtained outcomes have allowed, on the one hand, to identify the proposal providing the best numerical simulations of the experimental results and, on the other end, to draw useful indications on how to further improve the cyclic modelling by opportunely modifying the setting of the “pinching4” material model parameters.


2021 ◽  
pp. 109996
Author(s):  
Qi Wang ◽  
Zhen-yuan Jia ◽  
Bo-yu Zhang ◽  
Dun-lin Gao ◽  
Yu Ma ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 535
Author(s):  
Yifeng Wang ◽  
Guangjie Feng ◽  
Yan Wei ◽  
Bingxu Hu ◽  
Dean Deng

In this paper, the SiCp/Al composites were bonded via laser-induced exothermic reactions of a Ni–Al–Zr interlayer. The Ni–Al–Zr interlayer was designed based on its exothermic property and chemical compatibility with the SiCp/Al composites. The influences of the interlayer composition and bonding pressure on the joint microstructure and shear strength were investigated. Results indicated that high exothermic reactions occurred in the Ni–Al–Zr interlayer and realized the reliable bonding with the SiCp/Al composites. The interlayer products were the eutectic structure of NiAl+Ni2AlZr+Ni3Al5Zr2. NiAl3 and Ni2Al3 reaction layers were formed at the bonding interfaces. The interlayer composition and the bonding pressure determined the morphology and distribution of the voids and the reaction layers, thus controlling the joint shear strength. When the SiCp/Al composites were bonded using the interlayer with the Zr content of 15 wt.% under the bonding pressure of 3 MPa, the joint shear strength reached the maximum of 24 MPa.


Sign in / Sign up

Export Citation Format

Share Document