Seismic behaviour of shallow foundations: Shaking table experimentsvs numerical modelling

2008 ◽  
Vol 37 (4) ◽  
pp. 577-595 ◽  
Author(s):  
Roberto Paolucci ◽  
Masahiro Shirato ◽  
M. Tolga Yilmaz
2018 ◽  
Vol 763 ◽  
pp. 584-591 ◽  
Author(s):  
Vincenzo Macillo ◽  
Alessia Campiche ◽  
Sarmad Shakeel ◽  
Bianca Bucciero ◽  
Tatiana Pali ◽  
...  

In the past, the effort of the research was focused on the characterization and modelling of isolated CFS members or parts of building, but this cannot be enough for innovative structure, in which the sheathing panels interact with the steel framing providing the bracing effects against seismic actions. Therefore, in order to evaluate the seismic behaviour of CFS buildings sheathed with gypsum panels, a wide experimental campaign was conducted at University of Naples “Federico II” in the framework of European research project ELISSA (Energy efficient LIghtweight-Sustainable-SAfe steel construction). In particular, a two-storey building was tested on the shaking-table, considering different construction phases. In the first phase, the building included only structural elements and dynamic identification tests were carried out, whereas, in the second phase, the building was completed with all finishing components and it was tested for dynamic identification and under natural ground motions. In addition, a numerical model able to simulate the dynamic/earthquake response of the whole building, considering also the effect of finishing materials, was developed in OpenSees environment. The present paper describes the main results of shake-table testing and numerical modelling.


2008 ◽  
Vol 42 (10) ◽  
pp. 1433-1442 ◽  
Author(s):  
Stéphane Grange ◽  
Panagiotis Kotronis ◽  
Jacky Mazars

2013 ◽  
Vol 778 ◽  
pp. 698-705 ◽  
Author(s):  
Lidija Krstevska ◽  
Ljubomir Tashkov ◽  
Vlatka Rajčić ◽  
Roko Zarnic

Within the bilateral scientific project between the Institute of Earthquake Engineering and Engineering Seismology - UKIM-IZIIS, St. Cyril and Methodius University, Skopje, Republic of Macedonia and the Civil Engineering Faculty, University of Zagreb, Croatia, experimental testing of full scale composite timber-glass innovative panels was carried out on the seismic shaking table at IZIIS for the purpose of defining their behaviour and stability under real earthquake conditions. The seismic excitations selected for the shake-table testing of the model were four representative accelerograms recorded during the following earthquakes: El Centro, Petrovac, Kobe and Friuli. The idea was to investigate the seismic behavior of the model under several types of earthquakes, considering their different frequency content, peak acceleration and time duration. The performed tests showed clearly the behaviour of the composite panels and the failure mechanism under strong earthquake motion.


Author(s):  
Shota Urushadze ◽  
Miloš Drdácký

<p>Horizontal diaphragms play an important role in the seismic behaviour of old buildings, and their behaviour when loaded by in-plane shear has not yet been sufficiently described in literature. The distribution of horizontal forces among bearing walls is strongly dependent on the stiffness of horizontal components and their connections to the vertical structures. The paper focuses on horizontal diaphragms of historic buildings, such as traditional floor systems and feasible intervention technologies for the improvement of their resilience. Experimental behaviour of original and strengthened wooden floors is analysed in order to obtain information on the system performance and supply parameters for use in numerical modelling.</p>


2019 ◽  
Vol 92 ◽  
pp. 17002
Author(s):  
Zitao Zhang ◽  
Jianzhang Xiao ◽  
Yingqi Wei ◽  
Hong Cai ◽  
Jianhui Liang ◽  
...  

Similar to fully saturated sand, the partially saturated sand can also liquefy under certain conditions during earthquakes. This study aims to characterize the seismic behaviour of partially saturated sand. Centrifuge shaking table tests were performed using the IWHR horizontal-vertical centrifuge shaker. The experimental results indicate that the liquefaction resistance of the partially saturated sand increases with decreasing the degree of saturation and with increasing the initial effective stress right before shaking. The boundary between the liquefied and un-liquefied sand becomes deeper and deeper during shaking.


Sign in / Sign up

Export Citation Format

Share Document