scholarly journals Analytical examination for the stability of a competent stratum and implications for longwall coal mining

2019 ◽  
Vol 7 (2) ◽  
pp. 469-477 ◽  
Author(s):  
Yingchun Li
2020 ◽  
Vol 12 (4) ◽  
pp. 1528 ◽  
Author(s):  
Ximin Cui ◽  
Yuling Zhao ◽  
Guorui Wang ◽  
Bing Zhang ◽  
Chunyi Li

Exhausted or abandoned underground longwall mining may lead to long-term residual subsidence on surface land, which can cause some problems when the mined-out land is used for construction, land reclamation and ecological reconstruction. Thus, it is important to assess the stability and suitability of the land with a consideration of residual surface subsidence. Assuming a linear monotonic decrease in the annual residual surface subsidence, the limit of the sum of the annual residual subsidence factor, and continuity between surface subsidence in the last year of the weakening period and the residual surface subsidence in the first year, we establish a model to calculate the duration of residual subsidence and the annual residual surface subsidence factor caused by abandoned longwall coal mining. The duration of residual surface subsidence increases with the increase in mining thickness as well as the factor of extreme residual subsidence. The proposed method can quantitatively calculate the annual residual subsidence, the accumulative residual subsidence, and the potential future accumulative residual subsidence. This approach can be used to reasonably evaluate the stability and suitability of old mining subsidence areas and will be beneficial for the design of mining subsidence land reclamation and ecological reconstruction.


2019 ◽  
Vol 11 (13) ◽  
pp. 3719 ◽  
Author(s):  
Yihe Yu ◽  
Liqiang Ma

The mining induced subsidence and strata deformation are likely to affect the stability of the aquiclude, resulting in loss of water resources in the mining area. In order to reduce the disturbance of coal mining to the overlying strata and to preserve the water resources in the coal mining area, the roadway backfill mining (RBM) method was trialed in Yuyang coal mine in Northern Shaanxi, China. Based on pressure arch theory and ultimate strength theory, a mechanical model was developed to analyze the stability of coal pillars. Then the maximum number of vacant roadways between the mining face and the backfilling face was determined according to the stability of coal pillar and filling body. The method to calculate aquiclude subsidence and deformation was also proposed. Furthermore, as indicated by FLAC3D numerical simulations, the maximum tensile stress subjected by the aquiclude was 0.14 MPa, which is smaller than its tensile strength; the horizontal deformation was 0.24 mm/m, which is also smaller than the critical deformation of failure. Field monitoring data demonstrated a maximum of 2.76 m groundwater level drop in the mining area after mining. The groundwater level was determined to be 4.45~10.83 m below surface, ensuring the normal growth of surface vegetation and realizing the water-conservation coal mining (WCCM).


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3146 ◽  
Author(s):  
Izabela Jonek-Kowalska

The primary aim of this article is to examine financial efficiency and work productivity, as well as their determinants, in selected Polish coal mines in 1998–2015. To achieve this goal, after introducing a justification for the choice of subject and the literature studies, the research methodology is presented, and research results are subsequently described and analyzed. Next, based on the main conclusions, model regularities and policy implications regarding efficiency and productivity improvement in Polish coal mining enterprises are established. The research for this study was conducted in five Polish coal mines, which were chosen on the basis of criteria aimed at ensuring the results’ comparability and the stability of organizational and mining conditions in the analyzed research period.


Sign in / Sign up

Export Citation Format

Share Document