scholarly journals Techno‐economic analysis and energy performance of a geothermal earth‐to‐air heat exchanger (EAHE) system in residential buildings: A case study

Author(s):  
Ali Mostafaeipour ◽  
Hossein Goudarzi ◽  
Mohammadali Khanmohammadi ◽  
Mehdi Jahangiri ◽  
Ahmad Sedaghat ◽  
...  
Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 423-432
Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Abstract The residential-building sector in India consumes >25% of the total electricity and is the third-largest consumer of electricity; consumption increased by 26% between 2014 and 2017. India has introduced a star-labelling programme for residential buildings that is applicable for all single- and multiple-dwelling units in the country for residential purposes. The Energy Performance Index (EPI) of a building (annual energy consumption in kilowatt-hours per square metre of the building) is taken as an indicator for awarding the star label for residential buildings. For gauging the EPI status of existing buildings, the electricity consumption of residential buildings (in kWh/m2/year) is established through a case study of the residential society. Two years of electricity bills are collected for an Indian residential society located in Palam, Delhi, analysed and benchmarked with the Indian residential star-labelling programme. A wide EPI gap is observed for existing buildings for five-star energy labels. Based on existing electricity tariffs, the energy consumption of residential consumers and the Bureau of Energy Efficiency (BEE)’s proposed building ENERGY STAR labelling, a grid-integrated rooftop solar photovoltaic (PV) system is considered for achieving a higher star label. This research study establishes the potential of grid-connected rooftop solar PV systems for residential buildings in Indian cities through a case study of Delhi. Techno-economic analysis of a grid-integrated 3-kWp rooftop solar PV plant is analysed by using RETScreen software. The study establishes that an additional two stars can be achieved by existing buildings by using a grid-integrated rooftop solar PV plant. Payback for retrofit of a 3-kWp rooftop solar PV plant for Indian cites varies from 3 to 7 years. A case study in Delhi, India establishes the potential of grid-connected rooftop solar PV systems for residential buildings. Techno-economic analysis of grid integrated, 3 kWp rooftop solar systems estimates a payback period from 3 to 7 years.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1049
Author(s):  
Zhang Deng ◽  
Yixing Chen ◽  
Xiao Pan ◽  
Zhiwen Peng ◽  
Jingjing Yang

Urban building energy modeling (UBEM) is arousing interest in building energy modeling, which requires a large building dataset as an input. Building use is a critical parameter to infer archetype buildings for UBEM. This paper presented a case study to determine building use for city-scale buildings by integrating the Geographic Information System (GIS) based point-of-interest (POI) and community boundary datasets. A total of 68,966 building footprints, 281,767 POI data, and 3367 community boundaries were collected for Changsha, China. The primary building use was determined when a building was inside a community boundary (i.e., hospital or residential boundary) or the building contained POI data with main attributes (i.e., hotel or office building). Clustering analysis was used to divide buildings into sub-types for better energy performance evaluation. The method successfully identified building uses for 47,428 buildings among 68,966 building footprints, including 34,401 residential buildings, 1039 office buildings, 141 shopping malls, and 932 hotels. A validation process was carried out for 7895 buildings in the downtown area, which showed an overall accuracy rate of 86%. A UBEM case study for 243 office buildings in the downtown area was developed with the information identified from the POI and community boundary datasets. The proposed building use determination method can be easily applied to other cities. We will integrate the historical aerial imagery to determine the year of construction for a large scale of buildings in the future.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Dinh Manh Nguyen ◽  
Grace Ding ◽  
Göran Runeson

Over many decades, buildings have been recognised as a significant area contributing to the negative impacts on the environment over their lifecycle, accelerating climate change. In return, climate change also impacts on buildings with extreme heatwaves occurring more frequently and raising the earth’s temperature. The operation phase is the most extended period over a building’s lifespan. In this period, office buildings consume most energy and emit the highest amount of greenhouse gas pollution into the environment. Building upgrading to improve energy efficiency seems to be the best way to cut pollution as the existing building stock is massive. The paper presents an economic analysis of energy efficiency upgrade of buildings with a focus of office buildings. The paper identifies upgrading activities that are commonly undertaken to upgrade energy efficiency of office buildings and a case study of three office buildings in Sydney, Australia has been used to analyse the results. The upgrading activities can improve the energy performance of the case study buildings from 3 stars to 5 stars NABERS energy rating in compliance with the mandatory requirement in the Australian government’s energy policy. With the potential increase in energy price, energy efficiency upgrading will become more affordable, but currently, most of them, except solar panels and motion sensors show a negative return and would not be undertaken if they did not also contribute to higher rental income and an increased life span of the building. The upgrading discussed in the paper represent a potentially attractive alternative to demolition and building anew.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 587 ◽  
Author(s):  
İdil Ayçam ◽  
Sevilay Akalp ◽  
Leyla Senem Görgülü

Conventional energy use has brought environmental problems such as global warming and accelerated efforts to reduce energy consumption in many areas, particularly in the housing sector. For this purpose, bioclimatic design principles and vernacular architecture parameters have started to be examined in residential buildings nowadays. Thus, the demand for less energy-consuming houses has started to increase. In this study, we aimed to specify the significance of traditional architectural parameters for houses in the hot-dry climatic region of Diyarbakır, Turkey. Within the scope of the study, a case was based on the urban fabric of the traditional houses in Historical Diyarbakir Suriçi-Old Town settlement and the Şilbe Mass Housing Area was discussed. The courtyard types, settlement patterns, and street texture of traditional Diyarbakır houses were modeled by using DesignBuilder energy simulation program for the case study. Annual heating, cooling, and total energy loads were calculated, and their thermal performances were compared. The aim is to create a less energy-consuming and sustainable environment with the adaptation of traditional building form-street texture to today’s housing sector. Development of a settlement model, which is based on traditional houses’ bioclimatic design for hot-dry region, was intended to be applied in the modern housing sector of Turkey. Moreover, adapting local forms, urban texture, and settlement patterns to today has significant potential for sustainable architecture and energy-efficient buildings. According to this study, the optimum form and layout of traditional houses, which are one of the climate balanced building designs, provide annual energy savings if integrated and designed in today’s building construction. As a result of this study, if the passive design alternatives such as building shape, layout, and orientation were developed in the first stage of the design, energy efficient building design would be possible. The study is important for the continuation of traditional sustainable design.


2011 ◽  
Vol 43 (12) ◽  
pp. 3400-3409 ◽  
Author(s):  
Elena G. Dascalaki ◽  
Kalliopi G. Droutsa ◽  
Constantinos A. Balaras ◽  
Simon Kontoyiannidis

2021 ◽  
Vol 16 (3) ◽  
pp. 87-108
Author(s):  
Nadeeka Jayaweera ◽  
Upendra Rajapaksha ◽  
Inoka Manthilake

ABSTRACT This study examines the daylight and energy performance of 27 external shading scenarios in a high-rise residential building in the urban tropics. The cooling energy, daytime lighting energy and the spatial daylight autonomy (sDA) of the building model were simulated in Rhino3D and Grasshopper simulation software. The best performance scenario (vertical and horizontal shading on the twentieth floor, horizontal shading only for the eleventh floor and no shading for the second floor) satisfied 75 sDA(300lx|50) with corresponding annual enery performance of 16%–20% in the cardinal directions. The baseline scenario, which is the current practice of providing balconies on all floors, reduced daylight to less than 75 sDA on the eleventh and second floor, even though it had higher annual enery performance (19%–24%) than the best performance scenario. Application of the design principles to a case study indicated that 58% of the spaces had over 75 sDA for both Baseline and Best performance scenarios, while an increase in enery performance of 1%–3% was found in the Best performance scenario compared to the Baseline.


2016 ◽  
Vol 841 ◽  
pp. 110-115
Author(s):  
Gheorge Badea ◽  
Raluca Andreea Felseghi ◽  
Simona Răboaca ◽  
Ioan Aşchilean ◽  
Andrei Bolboacă ◽  
...  

For a good approach to new challenges recommended by EU Energy Performance of Buildings Directive, nearly Zero Energy Buildings (nZEB) concept for new residential buildings is conceived in order to drastically improving the overall performance of classical buildings, especially in terms of energy use, production and CO2 equivalent (CO2e) emissions. This paper shows the results of the case study where was investigated energy, economic and environmental performances of hybrid solar and wind system for neutral in terms of climate parameters nZEB. The aim of this study was to demonstrate the capability and feasibility of RES hybrid technology for the energy supply of Romanian nZEB, and also, was to establish new general criteria with the goal to determinate the optimal design solution and providing general principles for green energy production. The main results reveal that Romania has a potential for green energy to implement the new concept nZEB and the global technical optimum of a hybrid system for nZEB is determined by the optimal interaction between the design parameters. The hybrid solar and wind electric systems are functioned in operational stand alone mode, its are supplied 100% by energy from RES and embedded CO2 emissions are decreased by over 50% compared to the classics systems.


Sign in / Sign up

Export Citation Format

Share Document