Variations in rill morphology on unpaved road surfaces and their controlling factors

Author(s):  
Longxi Cao ◽  
Yi Wang ◽  
Yu Li ◽  
Xin Li
2011 ◽  
Vol 54 (4) ◽  
pp. 1377-1384 ◽  
Author(s):  
L.-X. Cao ◽  
K.-L. Zhang ◽  
H.-L. Dai ◽  
Z.-L. Guo

Author(s):  
C. Matsuyama ◽  
Y. Tanaka ◽  
M. Sato ◽  
H. Shima

Road corrugation refers to the formation of periodic, transverse ripples on unpaved road surfaces. It forms spontaneously on an initially flat surface under heavy traffic and can be considered to be a type of unstable growth phenomenon, possibly caused by the local volume contraction of the underlying soil due to a moving vehicle’s weight. In the present work, we demonstrate a possible mechanism for road corrugation using experimental data of soil consolidation and numerical simulations. The results indicate that the vertical oscillation of moving vehicles, which is excited by the initial irregularities of the surface, plays a key role in the development of corrugation.


1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


1993 ◽  
Vol 21 (1) ◽  
pp. 23-39 ◽  
Author(s):  
R. W. Scavuzzo ◽  
T. R. Richards ◽  
L. T. Charek

Abstract Tire vibration modes are known to play a key role in vehicle ride, for applications ranging from passenger cars to earthmover equipment. Inputs to the tire such as discrete impacts (harshness), rough road surfaces, tire nonuniformities, and tread patterns can potentially excite tire vibration modes. Many parameters affect the frequency of tire vibration modes: tire size, tire construction, inflation pressure, and operating conditions such as speed, load, and temperature. This paper discusses the influence of these parameters on tire vibration modes and describes how these tire modes influence vehicle ride quality. Results from both finite element modeling and modal testing are discussed.


Sign in / Sign up

Export Citation Format

Share Document