Late Quaternary terrace formation from knickpoint propagation in the headwaters of the Yellow River, NE Tibetan Plateau

Author(s):  
Ya Liu ◽  
Xianyan Wang ◽  
Qi Su ◽  
Shuangwen Yi ◽  
Xiaodong Miao ◽  
...  
2021 ◽  
Vol 205 ◽  
pp. 104601
Author(s):  
Wenwei Zhao ◽  
Chunzhu Chen ◽  
Qingfeng Jiang ◽  
Ming Ji ◽  
Jianan Zhen ◽  
...  

Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


2021 ◽  
Vol 252 ◽  
pp. 106736
Author(s):  
Dada Yan ◽  
Bernd Wünnemann ◽  
Georg Stauch ◽  
Yongzhan Zhang ◽  
Hao Long

2014 ◽  
Vol 81 (3) ◽  
pp. 400-423 ◽  
Author(s):  
Jijun Li ◽  
Xiaomin Fang ◽  
Chunhui Song ◽  
Baotian Pan ◽  
Yuzhen Ma ◽  
...  

AbstractThe way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~8 ± 1 Ma followed by stepwise accelerated rise at ~3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~8 Ma and later also with the global cooling since ~3.2 Ma, suggesting a major role for tectonic forcing of the cooling.


Sign in / Sign up

Export Citation Format

Share Document