yellow river source
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ze Ren ◽  
Cheng Zhang ◽  
Xia Li ◽  
Kang Ma ◽  
Zhe Zhang ◽  
...  

Thermokarst lakes are a ubiquitous and important landscape feature in cold regions and are changing tremendously due to the accelerated climate change. In thermokarst lakes, sediment and water are two distinct but highly interconnected habitats, harboring different bacterial communities in terms of taxonomic composition. However, the co-occurrence networks of these bacterial communities remain unclear. Here, we investigate the co-occurrence ecological networks of sediment and water bacterial communities for thermokarst lakes in the Yellow River Source Area on the Qinghai-Tibet Plateau. The results show that the bacterial communities construct distinct co-occurrence networks in sediment and water. The metacommunity network was parsed into four major modules formed by the operational taxonomic units (OTUs) enriched in sediment or water independently, and water-enriched OTUs exhibited much closer interconnections than sediment-enriched OTUs. When considering the sediment and water bacterial networks separately, different topological properties and modular patterns present: the sediment bacterial network was more clustered while the modules less responded to the environmental variables. On the contrary, the water bacterial network was more complex with the OTUs more interconnected and its modules more responded to the environmental variables. Moreover, the results of the structural equation model suggest that, by the influence of environmental variations on individual modules, the water bacterial communities would be more vulnerable under the fact of accelerating climate change. This study provides insights beyond a conventional taxonomic perspective, adding our knowledge of the potential mechanisms structuring bacterial community assembly and improving our prediction of the responses of this fast-changing ecosystem to future climate change.


2021 ◽  
Vol 13 (10) ◽  
pp. 4727-4757
Author(s):  
Mengna Li ◽  
Yijian Zeng ◽  
Maciek W. Lubczynski ◽  
Jean Roy ◽  
Lianyu Yu ◽  
...  

Abstract. The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Detailed knowledge of its hydrogeology is paramount to enable the understanding of groundwater dynamics, which plays a vital role in headwater areas like the Tibetan Plateau. Nevertheless, due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. In this study, borehole core lithology analysis, soil thickness measurement, an altitude survey, hydrogeological surveys, and hydrogeophysical surveys (e.g. magnetic resonance sounding – MRS, electrical resistivity tomography – ERT, and transient electromagnetic – TEM) were conducted in the Maqu catchment within the Yellow River source region (YRSR). The hydrogeological surveys reveal that groundwater flows from the west to the east, recharging the Yellow River. The hydraulic conductivity ranges from 0.2 to 12.4 m d−1. The MRS sounding results, i.e. water content and hydraulic conductivity, confirmed the presence of an unconfined aquifer in the flat eastern area. Based on TEM results, the depth of the Yellow River deposits was derived at several places in the flat eastern area, ranging from 50 to 208 m. The soil thickness measurements were done in the western mountainous area of the catchment, where hydrogeophysical and hydrogeological surveys were difficult to be carried out. The results indicate that most soil thicknesses, except on the valley floor, are within 1.2 m in the western mountainous area of the catchment, and the soil thickness decreases as the slope increases. These survey data and results can contribute to integrated hydrological modelling and water cycle analysis to improve a full-picture understanding of the water cycle at the Maqu catchment in the YRSR. The raw dataset is freely available at https://doi.org/10.17026/dans-z6t-zpn7 (Li et al., 2020a), and the dataset containing the processed ERT, MRS, and TEM data is also available at the National Tibetan Plateau Data Center with the link https://doi.org/10.11888/Hydro.tpdc.271221 (Li et al., 2020b).


Author(s):  
Pengfei Gu ◽  
Gaoxu WANG ◽  
Guodong Liu ◽  
Yongxiang Wu ◽  
Hongwei Liu ◽  
...  

Alpine basins are essential to the conservation of water resources. However, they are typically poorly gauged and inaccessible, owing to the harsh prevailing environment and complex terrain. To investigate the influences of different precipitation inputs on hydrological modeling in alpine basins, two representative satellite precipitation products [Tropical Rainfall Measuring Mission (TRMM) and Integrated Multi-Satellite Retrievals for GPM (IMERG)] and two reanalysis precipitation products [China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) and Climate Forecast System Reanalysis (CFSR)] in the Yellow River Source Region (YRSR) were selected for evaluation and hydrological verification against gauge-observed data (GO). Results indicates that the accuracy of these precipitation products in the warm season is higher than that in the cold season, and IMERG has the best performance, followed by CMADS, CFSR, and TRMM. TRMM seriously overestimates high rainfall of greater than 10 mm/day. CFSR overestimates moderate precipitation events of 1–10 mm/d, while CMADS underestimates the effects of precipitation events of 1–20 mm/d. Models using the GO as input yielded satisfactory performance during 2008–2013, and precipitation products have poor simulation results. Although the model using IMERG as input yielded unsatisfactory performance during 2014–2016, this did not affect the use of IMERG as a potential data source for YRSR. After bias correction, the quality of CFSR improves significantly with R2 and NSE increasing by 0.25 and 0.31 at Tangnaihai station, respectively. Model driven by the combination of GO and CMADS precipitation performed the best in all scenarios (R2 = 0.77, NSE = 0.72 at Tangnaihai station; R2 = 0.53, NSE = 0.48 at Jimai station). These results can provide reference data, and research ideas, for improved hydrological modeling of alpine basins.


2021 ◽  
Author(s):  
Ze Ren ◽  
Cheng Zhang ◽  
Xia Li ◽  
Kang Ma ◽  
Kexin Feng ◽  
...  

Thermokarst lakes are forming from permafrost thaw and severely affected by accelerating climate change. Sediment and water in these lakes are distinct habitats but closely connected. However, our understanding of the differences and linkages between sediment and water in thermokarst lakes remain largely unknow, especially from the perspective of bacterial community patterns and underlying mechanisms. In this study, we examined bacterial communities in sediment and water in thermokarst lakes in the Yellow River Source area, Qinghai-Tibet Plateau. Bacterial taxa were divided to abundant and rare according to their relative abundance, and the Sorensen dissimilarity (βsor) was partitioned into turnover (βturn) and nestedness (βnest). The results showed that the whole bacterial communities as well as the abundant and rare subcommunities differed substantially between sediment and water, in terms of taxonomical composition, α-diversity, and β-diversity. Sediment had significantly lower α-diversity indexes but higher β-diversity than water. Abundant taxa had significantly higher relative abundances but lower α-diversity and β-diversity than rare taxa. Moreover, bacterial communities are predominantly governed by strong turnover processes (βturn/βsor ratio of 0.925). Abundant subcommunities were significantly lower in βturn/βsor ratio compared to rare subcommunities. Bacterial communities in sediment had a significantly higher βturn/βsor ratio than in water. The results suggest that the bacterial communities of thermokarst lakes, especially rare subcommunities or particularly in sediment, might be strongly structured by environmental filtering and geographical isolation, leading to compositional distinct. By revealing bacterial communities in sediment and water, this integral study increased our current knowledge of thermokarst lakes, enhancing our understanding of the community assembly rules and ecosystem structures and processes of these rapid changing and vulnerable ecosystems.


2021 ◽  
Author(s):  
Yinglu Chen ◽  
Chun Chang Huang ◽  
Yuzhu Zhang ◽  
Yali Zhou ◽  
Xiaochun Zha ◽  
...  

2021 ◽  
Vol 18 (5) ◽  
pp. 1307-1320
Author(s):  
Jie-xia Li ◽  
Xi-lai Li ◽  
Jay Gao ◽  
Yan Shi ◽  
Ge-liang Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document