Assessing tectonic and climatic controls for Late Quaternary fluvial terraces in Guide, Jianzha, and Xunhua Basins along the Yellow River on the northeastern Tibetan Plateau

2018 ◽  
Vol 195 ◽  
pp. 109-121 ◽  
Author(s):  
Xiaohua Guo ◽  
Steven L. Forman ◽  
Liliana Marin ◽  
Xiaolin Li
Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 603 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Garzanti ◽  
Nie ◽  
Peng ◽  
...  

Despite decades of study, the factors that controlled the formation and evolution of theupper reaches of the Yellow River, including uplift of the northeastern Tibetan Plateau, Pliocene-Pleistocene climate change, and autogenetic processes are still poorly constrained. The stratigraphicrecord of such paleogeographic evolution is recorded in the sequence of nine terraces formed duringprogressive incision of the Yellow River in the last 1.7 Ma. This article investigates in detail forsediment provenance in terraces of the Lanzhou area, based on heavy-mineral and geochemical(REE) signatures. Two main provenance changes are identified, pointing each to a majorpaleogeographic reorganization coupled with expansion of the upper Yellow River catchment andenhanced sediment fluxes. The first change took place between the deposition of terrace T9 (formedaround 1.7 Ma) and terrace T8 (formed around 1.5 Ma), when rapid fluvial incision point to tectoniccontrol and active uplift of northeastern Tibetan Plateau. The second change took place betweendeposition of terrace T4 (formed around 0.86 Ma) and terrace T3 (formed around 0.14 Ma), duringa period of low incision rates and notably enhanced sediment fluxes as a response to enhanced EastAsian Summer Monsoon and consequently increased precipitations, pointing instead chiefly toclimatic control.


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Author(s):  
Yang Yu ◽  
Xianyan Wang ◽  
Shuangwen Yi ◽  
Xiaodong Miao ◽  
Jef Vandenberghe ◽  
...  

River aggradation or incision at different spatial-temporal scales are governed by tectonics, climate change, and surface processes which all adjust the ratio of sediment load to transport capacity of a channel. But how the river responds to differential tectonic and extreme climate events in a catchment is still poorly understood. Here, we address this issue by reconstructing the distribution, ages, and sedimentary process of fluvial terraces in a tectonically active area and monsoonal environment in the headwaters of the Yangtze River in the eastern Tibetan Plateau, China. Field observations, topographic analyses, and optically stimulated luminescence dating reveal a remarkable fluvial aggradation, followed by terrace formations at elevations of 55−62 m (T7), 42−46 m (T6), 38 m (T5), 22−36 m (T4), 18 m (T3), 12−16 m (T2), and 2−6 m (T1) above the present floodplain. Gravelly fluvial accumulation more than 62 m thick has been dated prior to 24−19 ka. It is regarded as a response to cold climate during the last glacial maximum. Subsequently, the strong monsoon precipitation contributed to cycles of rapid incision and lateral erosion, expressed as cut-in-fill terraces. The correlation of terraces suggests that specific tectonic activity controls the spatial scale and geomorphic characteristics of the terraces, while climate fluctuations determine the valley filling, river incision and terrace formation. Debris and colluvial sediments are frequently interbedded in fluvial sediment sequences, illustrating the episodic, short-timescale blocking of the channel ca. 20 ka. This indicates the potential impact of extreme events on geomorphic evolution in rugged terrain.


Sign in / Sign up

Export Citation Format

Share Document