scholarly journals MODELLING THE EFFECTS OF NORMAL FAULTING ON ALLUVIAL RIVER MEANDERING

Author(s):  
H. A. G. Woolderink ◽  
S. A. H. Weisscher ◽  
M. G. Kleinhans ◽  
C. Kasse ◽  
R. T. Van Balen
2021 ◽  
Author(s):  
Hessel Woolderink ◽  
Steven Weisscher ◽  
Maarten Kleinhans ◽  
Cornelis Kasse ◽  
Ronald Van Balen

<p>Normal faulting acts as a forcing on the morphodynamics of alluvial rivers by changing the topographic gradient of the river valley and channel around the fault zone. Normal faulting affects river morphodynamics either instantaneously by surface rupturing earthquakes, or gradually by continuous vertical displacement. The morphodynamic responses to normal faulting range from longitudinal bed profile adjustments to channel pattern changes. However, the effect of faulting on river morphodynamics and morphology is complex, as they also depend on numerous local, non-tectonic characteristics of flow, river bed/bank composition and vegetation cover. Moreover, river response to faulting is often transient. Such time-dependent river response is important to consider when deriving relationships between faulting and river dynamics from a morphological and sedimentological record. To enhance our understanding of river response to tectonic faulting, we used the physics-based, two-dimensional morphodynamic model Nays2D to simulate the responses of a laboratory-scale alluvial river to various faulting and offset scenarios. Our model focusses on the morphodynamic responses at the scale of multiple meander bends around a normal fault zone. Channel sinuosity increases as the downstream meander bend expands as a result of the faulting-enhanced valley gradient, after which a chute cutoff reduces channel sinuosity to a new dynamic equilibrium that is generally higher than the pre-faulting sinuosity. Relative uplift of the downstream part of the river due to a fault leads to reduced fluvial activity upstream, caused by a backwater effect. The position along a meander bend at which faulting occurs has a profound influence on channel sinuosity; fault locations that enhance flow velocities over the point bar result in a faster sinuosity increase and subsequent chute cutoff than locations that cause increased flow velocity directed towards the outer floodplain. Our study shows that inclusion of process-based reasoning in the interpretation of geomorphological and sedimentological observations of fluvial response to faulting improves our understanding of the natural processes involved and, therefore, contributes to better prediction of faulting effects on river morphodynamics.</p>


1962 ◽  
Vol S7-IV (3) ◽  
pp. 362-379
Author(s):  
Alain Combes

Abstract The Boutenac hills in the northeastern Corbieres region of southern France, are part of the autochthonous foreland of the eastern Corbieres nappe. They are an isolated massif between the Paleozoic formations of the Alaric mountain on the west, and the Jurassic and Cretaceous formations of the Fontfroide chain on the east, entirely surrounded by alluvium. Structurally, they comprise Mesozoic formations on the east thrust over the Eocene on the west, on a fault that is the prolongation of the Saint Chinian frontal fault to the northeast. The Mesozoic formations comprise upper (?) Triassic shale and dolomite, sandy limestone, dolomite, and limestone; Jurassic red sandstones and shales; and upper Cretaceous transgressive clastics. The Eocene is limestone and marl overlain by continental conglomerate and molasse, transgressive on the west upon the Alaric Paleozoics. Folding and thrust and normal faulting are important in the structure.


2020 ◽  
Vol 12 (1) ◽  
pp. 479-490
Author(s):  
Ahu Kömeç Mutlu

AbstractThis study focuses on the seismicity and stress inversion analysis of the Simav region in western Turkey. The latest moderate-size earthquake was recorded on May 19, 2011 (Mw 5.9), with a dense aftershock sequence of more than 5,000 earthquakes in 6 months. Between 2004 and 2018, data from earthquake events with magnitudes greater than 0.7 were compiled from 86 seismic stations. The source mechanism of 54 earthquakes with moment magnitudes greater than 3.5 was derived by using a moment tensor inversion. Normal faults with oblique-slip motions are dominant being compatible with the NE-SW extension direction of western Turkey. The regional stress field is assessed from focal mechanisms. Vertically oriented maximum compressional stress (σ1) is consistent with the extensional regime in the region. The σ1 and σ3 stress axes suggest the WNW-ESE compression and the NNE-SSW dilatation. The principal stress orientations support the movement direction of the NE-SW extension consistent with the mainly observed normal faulting motions.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


2009 ◽  
Vol 45 (4) ◽  
Author(s):  
M. Bolla Pittaluga ◽  
G. Nobile ◽  
G. Seminara

1996 ◽  
Vol 101 (B11) ◽  
pp. 25459-25471 ◽  
Author(s):  
Kathleen M. Hodgkinson ◽  
Ross S. Stein ◽  
Geoffrey C. P. King
Keyword(s):  

2013 ◽  
Vol 118 (2) ◽  
pp. 190-205 ◽  
Author(s):  
Amanda L. Nahm ◽  
Teemu Öhman ◽  
David A. Kring
Keyword(s):  
The Moon ◽  

2017 ◽  
Vol 114 (37) ◽  
pp. 9820-9825 ◽  
Author(s):  
George A. Thompson ◽  
Tom Parsons

In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.


Sign in / Sign up

Export Citation Format

Share Document