The 4 December 2015 Mw 7.1 Normal-Faulting Antarctic Plate Earthquake and Its Seismotectonic Implications

2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


2021 ◽  
Author(s):  
Edwin Nissen ◽  
Mussaver Didem Cambaz ◽  
Élyse Gaudreau ◽  
Andrew Howell ◽  
Ezgi Karasözen ◽  
...  

We investigate active tectonics in southwestern Turkey along the trend between Fethiye, near the eastern end of the Hellenic subduction zone, and Burdur, on the Anatolian plateau. Previously, regional GPS velocity data have been used to propose either (1) a NE-trending zone of strike-slip faulting coined the Fethiye-Burdur Fault Zone, or (2) a mix of uniaxial and radial extension accommodated by normal faults with diverse orientations. We test these models against the available earthquake data, updated in light of recent earthquakes at Acıpayam (20 March 2019, Mw 5.6) and Bozkurt (8 August 2019, Mw 5.8) — the largest in this region in the last two decades — and at Arıcılar (24 November 2017, Mw 5.3). Using Sentinel-1 InSAR and seismic waveforms and arrival times, we show that the Acıpayam, Bozkurt and Arıcılar earthquakes were buried ruptures on pure normal faults with subtle or indistinct topographic expressions. By exploiting ray paths shared with these well-recorded modern events, we relocate earlier instrumental seismicity throughout southwestern Turkey. We find that the 1971 Mw 6.0 Burdur earthquake likely ruptured a NW-dipping normal fault in an area of indistinct geomorphology near Salda Lake, contradicting earlier studies that place it on well-expressed faults bounding the Burdur basin. Overall, the northern Fethiye-Burdur trend is characterized by orthogonal normal faulting, consistent with radial extension and likely responsible for the distinct physiography of Turkey's 'Lake District'. The southern Fethiye-Burdur trend is dominated by ESE-WNW trending normal faulting, even though most faults evident in the topography strike NE-SW. This hints at a recent change in regional strain, perhaps related to eastward propagation of the Gökova graben into the area or to rapid subsidence of the Rhodes basin. Overall, our results support GPS-derived tectonic models that depict a mix of uniaxial and radial extension throughout southwestern Turkey, with no evidence for major, active strike-slip faults anywhere along the Fethiye-Burdur trend. Normal faulting orientations are consistent with a stress field driven primarily by contrasts in gravitational potential energy between the elevated Anatolian plateau and the low-lying Rhodes and Antalya basins.



2021 ◽  
Vol 873 (1) ◽  
pp. 012071
Author(s):  
Anggraini Rizkita Puji ◽  
Mudrik Rahmawan Daryono ◽  
Danny Hilman Natawidjaja

Abstract The 2018 Mw 7.5 earthquake in Palu, Central Sulawesi, resulting in ~2,000 fatalities and estimated economic losses of ~22.8 trillion Indonesian Rupiah, according to the report of BAPPENAS and Central Sulawesi Provincial-Government. Therefore, it is necessary to prevent similar disaster in the future by further detailed studies of any other potential sources that are capable of generating such hazards. Palu City is in the vast depression valley bordered by mountains in its eastern and western margins. The 2018 earthquake source is the Palukoro Fault, which runs through the western margin of onshore Palu Valley then continued under the bay. Along the eastern margin of the valley, we also identified a wide zone of many potentially active faults strands orienting N-S and NW-SE, showing predominantly normal faulting. These faults are observed from their normal fault scarps as inspected from Light Detection and Ranging Digital Terrain Model (LiDAR DTM) data with 90-cm resolution and field ground checks. The faults deformed the old terrace sediments (Late Pleistocene, ~125 kya), but it is unclear whether they also cut the Holocene young alluvial like the ruptured fault of 2018 event. Further paleoseismology investigation is then necessary to obtain further information about these potentially-active normal faults, including their slip-rate and the past ruptures.



Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 223-230 ◽  
Author(s):  
Sergio Chávez‐Pérez ◽  
John N. Louie ◽  
Sathish K. Pullammanappallil

Motivated by the need to image faults to test Cenozoic extension models for the Death Valley region of the western basin and range province, an area of strong lateral velocity variations, we examine the geometry of normal faulting in southern Death Valley by seismic depth imaging. We analyze COCORP Death Valley Line 9 to attain an enhanced image of shallow fault structure to 2.5 km depth. Previous work used standard seismic processing to infer normal faults from bed truncations, displacement of horizontal reflectors, and diffractions. We obtain a detailed velocity model by nonlinear optimization of first‐ arrival times picked from shot gathers, examine the unprocessed data for fault reflections, and use a Kirchhoff prestack depth imaging procedure to handle lateral velocity variations and arbitrary dips properly. Fault‐plane reflections reveal the listric true‐depth geometry of the normal fault at the Black Mountains range front in southern Death Valley. This is consistent with the concept of low‐angle extension in this region and strengthens its association with crustal‐scale magmatic plumbing.



Clay Minerals ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 237-247 ◽  
Author(s):  
M. Girard ◽  
P. Thélin ◽  
A. Steck

AbstractTectonic observations in the Tethyan Himalaya reveal an important extensional event that succeeds the emplacement of SW-verging nappes. A major thrust, called the Kum Tso Thrust, has been backfolded and reactivated by normal faulting associated with this event.Measurements of the Kübler index, coupled with characterization of clay-size paragenesis show the effect of normal faulting on the regional metamorphic zonation and indicate that important extension zones, like the Sarchu-Lachung La Normal Fault Zone (SLFZ), exist within the Tethyan Himalaya. Diagenetic limestones from within the SLFZ are characterized by the occurrence of mixed-layered clay phases, kaolinite and an illite with a 001 peak >0.4 Δ°2θ. This zone is bordered by two anchizonal-to-epizonal zones, where illite peaks become narrower. Further to the NE the successive appearance of biotite, chloritoid, garnet and garnet-staurolite-kyanite assemblages testifies to an increase in metamorphic grade. The cataclastic samples from the normal faults contain kaolinite, smectite and a ‘broad’ illite, indicating that extension occurs under diagenetic conditions.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Oh Park ◽  
Naoto Takahata ◽  
Ehsan Jamali Hondori ◽  
Asuka Yamaguchi ◽  
Takanori Kagoshima ◽  
...  

AbstractPlate bending-related normal faults (i.e. bend-faults) develop at the outer trench-slope of the oceanic plate incoming into the subduction zone. Numerous geophysical studies and numerical simulations suggest that bend-faults play a key role by providing pathways for seawater to flow into the oceanic crust and the upper mantle, thereby promoting hydration of the oceanic plate. However, deep penetration of seawater along bend-faults remains controversial because fluids that have percolated down into the mantle are difficult to detect. This report presents anomalously high helium isotope (3He/4He) ratios in sediment pore water and seismic reflection data which suggest fluid infiltration into the upper mantle and subsequent outflow through bend-faults across the outer slope of the Japan trench. The 3He/4He and 4He/20Ne ratios at sites near-trench bend-faults, which are close to the isotopic ratios of bottom seawater, are almost constant with depth, supporting local seawater inflow. Our findings provide the first reported evidence for a potentially large-scale active hydrothermal circulation system through bend-faults across the Moho (crust-mantle boundary) in and out of the oceanic lithospheric mantle.



2020 ◽  
Vol 12 (1) ◽  
pp. 479-490
Author(s):  
Ahu Kömeç Mutlu

AbstractThis study focuses on the seismicity and stress inversion analysis of the Simav region in western Turkey. The latest moderate-size earthquake was recorded on May 19, 2011 (Mw 5.9), with a dense aftershock sequence of more than 5,000 earthquakes in 6 months. Between 2004 and 2018, data from earthquake events with magnitudes greater than 0.7 were compiled from 86 seismic stations. The source mechanism of 54 earthquakes with moment magnitudes greater than 3.5 was derived by using a moment tensor inversion. Normal faults with oblique-slip motions are dominant being compatible with the NE-SW extension direction of western Turkey. The regional stress field is assessed from focal mechanisms. Vertically oriented maximum compressional stress (σ1) is consistent with the extensional regime in the region. The σ1 and σ3 stress axes suggest the WNW-ESE compression and the NNE-SSW dilatation. The principal stress orientations support the movement direction of the NE-SW extension consistent with the mainly observed normal faulting motions.



1988 ◽  
Vol 78 (5) ◽  
pp. 1707-1724
Author(s):  
Masayuki Kikuchi ◽  
Yoshio Fukao

Abstract The seismic wave energy is evaluated for 35 large earthquakes by inverting far-field long-period P waves into the multiple-shock sequence. The results show that the seismic wave energy thus obtained is systematically less than that inferred from the Gutenberg-Richter's formula with the seismic magnitude. The difference amounts to one order of magnitude. The results also show that the energy-moment ratio is well confined to a narrow range: 10−6 < ES/Mo < 10−5 with the average of ∼5 × 10−6. This average value is exactly one order of magnitude as small as the energy-moment ratio inferred from the Gutenberg-Richter's formula using the moment magnitude. Comparing the energy-moment ratio with Δσo/2μ, where Δσo and μ are the stress drop and the rigidity, we obtain an empirical relation: ES/Mo ∼ 0.1 × Δσ0/2μ. Such a relation can be interpreted in terms of a subsonic rupture where the energy loss due to cohesion is not negligible to the seismic wave energy.



1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.



1971 ◽  
Vol 61 (5) ◽  
pp. 1369-1379 ◽  
Author(s):  
Nezihi Canitez ◽  
M. Nafi Toksöz

abstract The determination of focal depth and other source parameters by the use of first-motion data and surface-wave spectra is investigated. It is shown that the spectral ratio of Love to Rayleigh waves (L/R) is sensitive to all source parameters. The azimuthal variation of the L/R spectral ratios can be used to check the fault-plane solution as well as for focal depth determinations. Medium response, attenuation, and source finiteness seriously affect the absolute spectra and introduce uncertainty into the focal depth determinations. These effects are nearly canceled out when L/R amplitude ratios are used. Thus, the preferred procedure for source mechanism studies of shallow earthquakes is to use jointly the body-wave data, absolute spectra of surface waves, and the Love/Rayleigh spectral ratios. With this procedure, focal depths can be determined to an accuracy of a few kilometers.



Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1252
Author(s):  
Jan Barmuta ◽  
Krzysztof Starzec ◽  
Wojciech Schnabel

Based on the interpretation of 2D seismic profiles integrated with surface geological investigations, a mechanism responsible for the formation of a large scale normal fault zone has been proposed. The fault, here referred to as the Rycerka Fault, has a predominantly normal dip-slip component with the detachment surface located at the base of Carpathian units. The fault developed due to the formation of an anticlinal stack within the Dukla Unit overlain by the Magura Units. Stacking of a relatively narrow duplex led to the growth of a dome-like culmination in the lower unit, i.e., the Dukla Unit, and, as a consequence of differential uplift of the unit above and outside the duplex, the upper unit (the Magura Unit) was subjected to stretching. This process invoked normal faulting along the lateral culmination wall and was facilitated by the regional, syn-thrusting arc–parallel extension. Horizontal movement along the fault plane is a result of tear faulting accommodating a varied rate of advancement of Carpathian units. The time of the fault formation is not well constrained; however, based on superposition criterion, the syn -thrusting origin is anticipated.



Sign in / Sign up

Export Citation Format

Share Document