scholarly journals Mesospheric Mountain Wave Activity in the Lee of the Southern Andes

2020 ◽  
Author(s):  
Pierre-Dominique Pautet ◽  
Michael J. Taylor ◽  
David C. Fritts ◽  
Diego Janches ◽  
Natalie Kaifler ◽  
...  
Author(s):  
P.‐D. Pautet ◽  
M. J. Taylor ◽  
D. C. Fritts ◽  
D. Janches ◽  
N. Kaifler ◽  
...  

2016 ◽  
Vol 16 (14) ◽  
pp. 9381-9397 ◽  
Author(s):  
Lars Hoffmann ◽  
Alison W. Grimsdell ◽  
M. Joan Alexander

Abstract. Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behavior of the Southern Hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003–2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA) Aqua satellite. We introduce a simple and effective approach, referred to as the “two-box method”, to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid-fall to mid-spring (April–October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90 %), followed by the Antarctic Peninsula (76 %), Kerguelen Islands (73 %), Tasmania (70 %), New Zealand (67 %), Heard Island (60 %), and other hotspots (24–54 %). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid-stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60 % with mean absolute errors of 4–5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low-level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation.


2019 ◽  
Author(s):  
Klemens Hocke ◽  
Jonas Hagen ◽  
Franziska Schranz ◽  
Leonie Bernet

Abstract. Observations of the global distribution of mesospheric gravity wave activity are rare. To our knowledge there exist only a few articles showing global maps of gravity wave potential energy in the mesosphere derived from observations of the instrument SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) on NASA's satellite TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics). In the present study, we find that the geopotential height (GPH) measurements of the instrument MLS (Microwave Limb Sounder) on NASA's satellite Aura are sensitive to mesospheric gravity waves with horizontal wavelengths between 200 and 1500 km. We apply a data analysis which evaluates the standard deviation of horizontal GPH perturbations at a fixed pressure level and along the orbit of the sounding volume of Aura/MLS. The orographic waves from the Southern Andes in August serve as a test signal for the horizontal resolution and sensitivity of the method. We find enhanced gravity wave activity in the lower, middle, and upper mesosphere in a small region over the Southern Andes. It seems that the horizontal resolution of the mesospheric gravity wave maps provided by Aura/MLS is higher than those of TIMED/SABER. We apply the method to estimate the global distributions of mesospheric gravity wave activity before and after the major sudden stratospheric warmings (SSWs) of January 21, 2006, January 24, 2009, and January 6, 2013 using 30 day intervals of Aura/MLS observations of GPH. It seems that the gravity wave activity in the lower mesosphere over the subtropical convection regions of the summer hemisphere are decreased after the SSW of January 21, 2006. The gravity wave activity in the lower and middle mesosphere over middle and high latitudes (40° N to 70° N) of the winter hemisphere is decreased after the SSW of January 24, 2009. The major SSW of January 6, 2013 is preceded by enhanced mesospheric gravity wave activity over Eurasia at high latitudes (40° N to 60° N). This asymmetric gravity wave activity in the lower mesosphere is coincident with a long-lasting stay of the stratospheric polar vortex mainly in the Eurasian longitude sector before the SSW of January 6, 2013. In case of the SSW 2009 and SSW 2013, the gravity wave activity is enhanced at latitudes poleward of 70° N in the lower and middle mesosphere after the SSWs.


2016 ◽  
Author(s):  
Lars Hoffmann ◽  
Alison W. Grimsdell ◽  
M. Joan Alexander

Abstract. Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003–2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the "two-box method", to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April–October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90 %), followed by the Antarctic Peninsula (76 %), Kerguelen Islands (73 %), Tasmania (70 %), New Zealand (67 %), Heard Island (60 %), and other hotspots (24–54 %). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60 % with mean absolute errors of 4–5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation.


2011 ◽  
Vol 50 (5) ◽  
pp. 1088-1106 ◽  
Author(s):  
Željko Večenaj ◽  
Stephan F. J. De Wekker ◽  
Vanda Grubišić

AbstractA case study of mountain-wave-induced turbulence observed during the Terrain-Induced Rotor Experiment (T-REX) in Owens Valley, California, is presented. During this case study, large spatial and temporal variability in aerosol backscatter associated with mountain-wave activity was observed in the valley atmosphere by an aerosol lidar. The corresponding along- and cross-valley turbulence structure was investigated using data collected by three 30-m flux towers equipped with six levels of ultrasonic anemometers. Time series of turbulent kinetic energy (TKE) show higher levels of TKE on the sloping western part of the valley when compared with the valley center. The magnitude of the TKE is highly dependent on the averaging time on the western slope, however, indicating that mesoscale transport associated with mountain-wave activity is important here. Analysis of the TKE budget shows that in the central parts of the valley mechanical production of turbulence dominates and is balanced by turbulent dissipation, whereas advective effects appear to play a dominant role over the western slope. In agreement with the aerosol backscatter observations, spatial variability of a turbulent-length-scale parameter suggests the presence of larger turbulent eddies over the western slope than along the valley center. The data and findings from this case study can be used to evaluate the performance of turbulence parameterization schemes in mountainous terrain.


2020 ◽  
Vol 77 (12) ◽  
pp. 4337-4356
Author(s):  
Thomas S. Lund ◽  
David C. Fritts ◽  
Kam Wan ◽  
Brian Laughman ◽  
Han-Li Liu

AbstractThis paper addresses the compressible nonlinear dynamics accompanying increasing mountain wave (MW) forcing over the southern Andes and propagation into the mesosphere and lower thermosphere (MLT) under winter conditions. A stretched grid provides very high resolution of the MW dynamics in a large computational domain. A slow increase of cross-mountain winds enables MWs to initially break in the mesosphere and extend to lower and higher altitudes thereafter. MW structure and breaking is strongly modulated by static mean and semidiurnal tide fields exhibiting a critical level at ~114 km for zonal MW propagation. Varying vertical group velocities for different zonal wavelengths λx yield initial breaking in the lee of the major Andes peaks for λx ~ 50 km, and extending significantly upstream for larger λx approaching the critical level at later times. The localized extent of the Andes terrain in latitude leads to “ship wave” responses above the individual peaks at earlier times, and a much larger ship-wave response at 100 km and above as the larger-scale MWs achieve large amplitudes. Other responses above regions of MW breaking include large-scale secondary gravity waves and acoustic waves that achieve very large amplitudes extending well into the thermosphere. MW breaking also causes momentum deposition that yields local decelerations initially, which merge and extend horizontally thereafter and persist throughout the event. Companion papers examine the associated momentum fluxes, mean-flow evolution, gravity wave–tidal interactions, and the MW instability dynamics and sources of secondary gravity waves and acoustic waves.


Author(s):  
David C. Fritts ◽  
Thomas S. Lund ◽  
Kam Wan ◽  
Han-Li Liu

AbstractA companion paper by Lund et al. (2020) employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the Southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave/mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially-localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely-zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity-wave/mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes.


2004 ◽  
Vol 22 (11) ◽  
pp. 3781-3788 ◽  
Author(s):  
D. A. Hooper ◽  
J. Arvelius ◽  
K. Stebel

Abstract. An empirical technique for retrieving profiles of the square of the Brunt-Väisälä frequency, ωB2, from MST radar return signal power is presented. The validity of the technique, which is applied over the altitude range 1.0-15.7km, is limited to those altitudes at which the humidity contributions to the mean vertical gradient of generalised potential refractive index, M, can be ignored. Although this is commonly assumed to be the case above the first few kilometres of the atmosphere, it is shown that humidity contributions can be significant right up to the tropopause level. In specific circumstances, however, the technique is valid over large sections of the troposphere. Comparisons of radar- and (balloon-borne) radiosonde-derived ωB2 profiles are typically quantitatively and qualitatively well matched. However, the horizontal separation between the radar and the radiosondes (which were launched at the radar site) increases with increasing altitude. Under conditions of mountain wave activity, which can be highly localised, large discrepancies can occur at lower-stratospheric altitudes. This demonstrates the fact that radiosonde observations cannot necessarily be assumed to be representative of the atmosphere above the launch site.


1995 ◽  
Vol 13 (7) ◽  
pp. 757-767 ◽  
Author(s):  
I. T. Prichard ◽  
L. Thomas ◽  
R. M. Worthington

Abstract. Radar observations at 46.5 MHz of vertical-velocity perturbations at Aberystwyth (52.4°N, 4.1°W) have been used to examine the incidence of mountain waves and their dependence on local topography and the wind vector at low heights. A contrast is drawn between the effects of easterly winds passing over major topographical features to the east of the radar site and those of westerly winds crossing low coastal topographical features to the west. Estimates are made of the vertical flux of horizontal momentum associated with mountain waves, and the general influence of mountain-wave activity on vertical-velocity measurements at the site is assessed.


Sign in / Sign up

Export Citation Format

Share Document