scholarly journals Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepods associated bacteriobiome

2020 ◽  
Author(s):  
Balamurugan Sadaiappan ◽  
Prasannakumar Chinnamani ◽  
Uthara V Nambiar ◽  
Mahendran Subramanian ◽  
Manguesh U Gauns
2020 ◽  
Author(s):  
Balamurugan Sadaiappan ◽  
Prasannakumar Chinnamani ◽  
Uthara V Nambiar ◽  
Mahendran Subramanian ◽  
Manguesh U Gauns

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Balamurugan Sadaiappan ◽  
Chinnamani PrasannaKumar ◽  
V. Uthara Nambiar ◽  
Mahendran Subramanian ◽  
Manguesh U. Gauns

AbstractCopepods are the dominant members of the zooplankton community and the most abundant form of life. It is imperative to obtain insights into the copepod-associated bacteriobiomes (CAB) in order to identify specific bacterial taxa associated within a copepod, and to understand how they vary between different copepods. Analysing the potential genes within the CAB may reveal their intrinsic role in biogeochemical cycles. For this, machine-learning models and PICRUSt2 analysis were deployed to analyse 16S rDNA gene sequences (approximately 16 million reads) of CAB belonging to five different copepod genera viz., Acartia spp., Calanus spp., Centropages sp., Pleuromamma spp., and Temora spp.. Overall, we predict 50 sub-OTUs (s-OTUs) (gradient boosting classifiers) to be important in five copepod genera. Among these, 15 s-OTUs were predicted to be important in Calanus spp. and 20 s-OTUs as important in Pleuromamma spp.. Four bacterial s-OTUs Acinetobacter johnsonii, Phaeobacter, Vibrio shilonii and Piscirickettsiaceae were identified as important s-OTUs in Calanus spp., and the s-OTUs Marinobacter, Alteromonas, Desulfovibrio, Limnobacter, Sphingomonas, Methyloversatilis, Enhydrobacter and Coriobacteriaceae were predicted as important s-OTUs in Pleuromamma spp., for the first time. Our meta-analysis revealed that the CAB of Pleuromamma spp. had a high proportion of potential genes responsible for methanogenesis and nitrogen fixation, whereas the CAB of Temora spp. had a high proportion of potential genes involved in assimilatory sulphate reduction, and cyanocobalamin synthesis. The CAB of Pleuromamma spp. and Temora spp. have potential genes accountable for iron transport.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1383
Author(s):  
Sakifa Aktar ◽  
Ashis Talukder ◽  
Md. Martuza Ahamad ◽  
A. H. M. Kamal ◽  
Jahidur Rahman Khan ◽  
...  

Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus, is a significant global challenge. Many individuals who become infected may have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative regarding the individual risk of severe illness and mortality. Determining the degree to which comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. To assess this we performed a meta-analysis of published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Our meta-analysis suggested that chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy, and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictors of mortality, in terms of symptom–comorbidity combinations, it was observed that Pneumonia–Hypertension, Pneumonia–Diabetes, and Acute Respiratory Distress Syndrome (ARDS)–Hypertension showed the most significant associations with COVID-19 mortality. These results highlight the patient cohorts most likely to be at risk of COVID-19-related severe morbidity and mortality, which have implications for prioritization of hospital resources.


2021 ◽  
Author(s):  
Balamurugan Sadaiappan ◽  
Prasannakumar Chinnamani ◽  
Uthara V Nambiar ◽  
Mahendran Subramanian ◽  
Manguesh U Gauns

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document