scholarly journals Estimation of Bed Shear Stress using Turbulent Kinetic Energy in Three-dimensional Complex Flow Fields around an Obstruction in a Coarse Bed River

2020 ◽  
Author(s):  
Jun Seon lee ◽  
seung ho hong
Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2753
Author(s):  
Liyuan Zhang ◽  
Faxing Zhang ◽  
Ailing Cai ◽  
Zhaoming Song ◽  
Shilin Tong

Bed shear stress is closely related to sediment transport in rivers. Bed shear stress estimation is very difficult, especially for complex flow fields. In this study, complex flow field measurement experiments in a 60° bend with a groyne were performed. The feasibility and reliability of bed shear stress estimations using the log-law method in a complex flow field were analyzed and compared with those associated with the Reynolds, Turbulent Kinetic Energy (TKE), and TKE-w′ methods. The results show that the TKE, Reynolds, and log-law methods produced similar bed shear stress estimates, while the TKE-w′ method produced larger estimates than the other methods. The TKE-w′ method was found to be more suitable for bed shear stress estimation than the TKE method, but the value of its constant C2 needed to be re-estimated. In a complex, strong, three-dimensional flow field, the height of the measurement point (relative or absolute) should be re-estimated when a single point measurement is used to estimate the bed shear stress. The results of this study provide guidance for experimental measurement of bed shear stress in a complex flow field.


2004 ◽  
Vol 29 (11) ◽  
pp. 1403-1415 ◽  
Author(s):  
Pascale M. Biron ◽  
Colleen Robson ◽  
Michel F. Lapointe ◽  
Susan J. Gaskin

1997 ◽  
Vol 350 ◽  
pp. 189-208 ◽  
Author(s):  
DEBORA A. COMPTON ◽  
JOHN K. EATON

An experiment was performed to measure near-wall velocity and Reynolds stress profiles in a pressure-driven three-dimensional turbulent boundary layer. An initially two-dimensional boundary layer (Reθ≈4000) was exposed to a strong spanwise pressure gradient. At the furthest downstream measurement locations there was also a fairly strong favourable streamwise pressure gradient.Measurements were made using a specially designed near-wall laser-Doppler anemometer (LDA), in addition to conventional methods. The LDA used short focal length optics, a mirror probe suspended in the flow, and side-scatter collection to achieve a measuring volume 35 μm in diameter and approximately 65 μm long.The data presented include mean velocity measurements and Reynolds stresses, all extending well below y+=10, at several profile locations. Terms of the turbulent kinetic energy transport equation are presented at two profile locations. The mean flow is nearly collateral (i.e. W is proportional to U) at the wall. Turbulent kinetic energy is mildly suppressed in the near-wall region and the shear stress components are strongly affected by three-dimensionality. As a result, the ratio of shear stress to turbulent kinetic energy is suppressed throughout most of the boundary layer. The angles of stress and strain are misaligned, except very near the wall (around y+=10) where the angles nearly coincide with the mean flow angle. Three-dimensionality appears to mildly reduce the production of turbulent kinetic energy.


2017 ◽  
Vol 10 (12) ◽  
pp. 4511-4523 ◽  
Author(s):  
Tarandeep S. Kalra ◽  
Alfredo Aretxabaleta ◽  
Pranay Seshadri ◽  
Neil K. Ganju ◽  
Alexis Beudin

Abstract. Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.


1994 ◽  
Vol 98 (978) ◽  
pp. 311-318
Author(s):  
C.P. Yeung ◽  
L.C. Squire

SummaryThe three-dimensional vortex/boundary layer interaction of a type which may occur on a high-lift aerofoil has been studied. The experimental configuration simulates the trailing vortex system generated by two differentially-deflected slats which interact with an otherwise two-dimensional boundary layer developed on the wing surface under a nominal zero pressure gradient. The mean and turbulent flowfields are measured by a triple hot-wire system. The measurements show that the trailing vortex system includes the vortex sheets shed from the slats and the single vortex formed at the discontinuity between them. The single vortex moves sideways and interacts with the boundary layer as it develops downstream. During the interaction with the boundary layer, the low momentum, high turbulent-kinetic energy flow carrying negative longitudinal vorticity is entrained from the boundary layer and rolled into the vortex at the line of lateral convergence on the test surface. Likewise, at the line of lateral divergence, the high momentum, low turbulent kinetic energy flow carried by the vortex impinges on the boundary layer, suppressing the turbulent energy level and the growth of the boundary layer.


2001 ◽  
Vol 448 ◽  
pp. 53-80 ◽  
Author(s):  
Z. LIU ◽  
R. J. ADRIAN ◽  
T. J. HANRATTY

Turbulent flow in a rectangular channel is investigated to determine the scale and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378 and 29 935 are used to form two-point spatial correlation functions, from which the proper orthogonal modes are determined. Large-scale motions – having length scales of the order of the channel width and represented by a small set of low-order eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity component and a small fraction of the kinetic energy of the wall-normal velocities. Surprisingly, the set of large-scale modes that contains half of the total turbulent kinetic energy in the channel, also contains two-thirds to three-quarters of the total Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather than the main turbulent motions, that dominate turbulent transport in all parts of the channel except the buffer layer. Samples of the large-scale structures associated with the dominant eigenfunctions are found by projecting individual realizations onto the dominant modes. In the streamwise wall-normal plane their patterns often consist of an inclined region of second quadrant vectors separated from an upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear layer/Q2 region of the largest motions extends beyond the centreline of the channel and lies under a region of fluid that rotates about the spanwise direction. This pattern is very similar to the signature of a hairpin vortex. Reynolds number similarity of the large structures is demonstrated, approximately, by comparing the two-dimensional correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1423
Author(s):  
Amir Golpira ◽  
Fengbin Huang ◽  
Abul B.M. Baki

This study experimentally investigated the effect of boulder spacing and boulder submergence ratio on the near-bed shear stress in a single array of boulders in a gravel bed open channel flume. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. Four methods of estimating near-bed shear stress were compared. The results suggested a significant effect of boulder spacing and boulder submergence ratio on the near-bed shear stress estimations and their spatial distributions. It was found that at unsubmerged condition, the turbulent kinetic energy (TKE) and modified TKE methods can be used interchangeably to estimate the near-bed shear stress. At both submerged and unsubmerged conditions, the Reynolds method performed differently from the other point-methods. Moreover, a quadrant analysis was performed to examine the turbulent events and their contribution to the near-bed Reynolds shear stress with the effect of boulder spacing. Generally, the burst events (ejections and sweeps) were reduced in the presence of boulders. This study may improve the understanding of the effect of the boulder spacing and boulder submergence ratio on the near-bed shear stress estimations of stream restoration practices.


Sign in / Sign up

Export Citation Format

Share Document