Development mechanisms and regional characteristics of the Asian monsoon system

2021 ◽  
Author(s):  
Ruth Geen ◽  
Francis Hugo Lambert ◽  
Geoffrey K Vallis
2019 ◽  
Vol 53 (9-10) ◽  
pp. 6245-6264 ◽  
Author(s):  
Charu Singh ◽  
Dilip Ganguly ◽  
Puneet Sharma ◽  
Shiwansha Mishra

1998 ◽  
Vol 16 (2) ◽  
pp. 108-121 ◽  
Author(s):  
Cui Mao-chang ◽  
Lian Shu-min ◽  
Yang Dong-fang ◽  
Eduardo Zorita

2020 ◽  
Author(s):  
Paul Valdes ◽  
Alex Farnsworth ◽  
Tao Su ◽  
Robert Spicer ◽  
Lin Ding ◽  
...  

<p>The Cenozoic uplift history of Tibet and its impact on the Asian monsoon and vegetation is complex. The building of the Tibetan Plateau is not a simple story of the rise of a single geological entity driven by the relentless northward passage of India as depicted in numerous modelling exercises, but was a complex process involving a succession of collisions of several Gondwanan terranes with Asia. The talk will review our current understanding of the uplift history of Tibet and show new climate model simulations of how Tibet has influenced climate, vegetation and biodiversity in the region. We make use of isotope-enabled Earth System models, as well as high resolution models to show that the complex history of Tibet has important consequences for understanding the evolution of both the summer and winter Asian monsoon. We show that post-Oligocene growth of north and north-eastern Tibet is crucial for the evolution of vegetation and biodiversity in the region by altering the strength of the winter monsoon system over Asia.</p>


2013 ◽  
Vol 9 (5) ◽  
pp. 2101-2115 ◽  
Author(s):  
M. Reuter ◽  
W. E. Piller ◽  
M. Harzhauser ◽  
A. Kroh

Abstract. Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27–24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene–Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late Oligocene global warming (~ 24 Ma).


2021 ◽  
Author(s):  
Jasper A. Wassenburg ◽  
Hubert B. Vonhof ◽  
Hai Cheng ◽  
Alfredo Martínez-García ◽  
Pia-Rebecca Ebner ◽  
...  

AbstractDuring glacial terminations, massive iceberg discharges and meltwater pulses in the North Atlantic triggered a shutdown of the Atlantic Meridional Overturning Circulation (AMOC). Speleothem calcium carbonate oxygen isotope records (δ18OCc) indicate that the collapse of the AMOC caused dramatic changes in the distribution and variability of the East Asian and Indian monsoon rainfall. However, the mechanisms linking changes in the intensity of the AMOC and Asian monsoon δ18OCc are not fully understood. Part of the challenge arises from the fact that speleothem δ18OCc depends on not only the δ18O of precipitation but also temperature and kinetic isotope effects. Here we quantitatively deconvolve these parameters affecting δ18OCc by applying three geochemical techniques in speleothems covering the penultimate glacial termination. Our data suggest that the weakening of the AMOC during meltwater pulse 2A caused substantial cooling in East Asia and a shortening of the summer monsoon season, whereas the collapse of the AMOC during meltwater pulse 2B (133,000 years ago) also caused a dramatic decrease in the intensity of the Indian summer monsoon. These results reveal that the different modes of the AMOC produced distinct impacts on the monsoon system.


2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Dilip Ganguly ◽  
Philip J. Rasch ◽  
Hailong Wang ◽  
Jin-ho Yoon

Sign in / Sign up

Export Citation Format

Share Document