Reconnection as an Energy Cascade

2021 ◽  
Author(s):  
Subash Adhikari
Keyword(s):  
2019 ◽  
Vol 4 (10) ◽  
Author(s):  
Mohamad Ibrahim Cheikh ◽  
James Chen ◽  
Mingjun Wei

2012 ◽  
Vol 350 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Radu Dascaliuc ◽  
Zoran Grujić

2021 ◽  
Vol 119 (15) ◽  
pp. 154101
Author(s):  
Nur Fadilah Jamaludin ◽  
Benny Febriansyah ◽  
Yan Fong Ng ◽  
Natalia Yantara ◽  
Mingjie Li ◽  
...  

2021 ◽  
Author(s):  
Federica Gucci ◽  
Lorenzo Giovannini ◽  
Dino Zardi ◽  
Nikki Vercauteren

<p>The broad variety of phenomena occurring on multiple scales under stably stratified conditions and their complex interactions make it difficult to get a full description of the Stable Boundary Layer (SBL). Near-surface turbulence may be intermittent and highly anisotropic even at small scales. By studying the invariants of the anisotropy Reynolds stress tensor, it is possible to analyse the eddy kinetic energy distribution over the three components of the flow. Recent analyses of SBL turbulence data highlighted a prevalence of one-component limiting state of anisotropy. The causes of this particular limiting state are not fully understood, but there is evidence that submeso activity influences turbulence topology.<span> </span></p><p>This open question motivated the present work, that addresses the issue from the point of view of space dimensionality. In large-scale atmospheric and oceanic dynamics it is well known that turbulent motions may transfer energy both to the large and to the small scales, according to density stratification and rotation. These two properties act as constraints on the flow, giving it a 2D structure, and leading turbulence to be more complex than the homogeneous and isotropic case. For a SBL in low-wind speed conditions, atmospheric stratification might be very strong and we investigate if some of the peculiar characteristics of this regime might be related to a quasi-2D dynamics, with the occurrence of an inverse energy cascade, typical of 2D-like turbulence.</p><p>Energy exchanges across larger and smaller scales are studied by analysing the direction of the momentum flux with different methods, including a coarse-graining approach based on Large Eddy Simulation (LES) theory. The SnoHATS dataset was used to this purpose, where two vertically-separated horizontal arrays of sonic anemometers over the Plaine Morte Glacier (Switzerland) allowed the computation of the full three-dimensional velocity gradient. In order to fully characterize the energy exchanges according to different states of turbulence anisotropy, energy conversion processes between eddy kinetic and potential energy have also been considered and analysed at different heights. To this purpose, the dataset FLOSSII was used, providing turbulence measurements up to 30 m above a flat grass surface, often covered by snow.<span> </span></p><p>Results seem to suggest that turbulent kinetic energy in the SBL is distributed mainly in one component more as a consequence of wave-turbulence interactions than of development of 2D-like turbulence. This gives insights on mechanisms driving turbulence anisotropy that might be used to improve turbulence parameterizations in the SBL.</p>


2019 ◽  
Vol 49 (11) ◽  
pp. 2815-2827
Author(s):  
Shengpeng Wang ◽  
Zhao Jing ◽  
Qiuying Zhang ◽  
Ping Chang ◽  
Zhaohui Chen ◽  
...  

AbstractIn this study, the global eddy kinetic energy (EKE) budget in horizontal wavenumber space is analyzed based on 1/10° ocean general circulation model simulations. In both the tropical and midlatitude regions, the barotropic energy conversion from background flow to eddies is positive throughout the wavenumber space and generally peaks at the scale (Le) where EKE reaches its maximum. The baroclinic energy conversion is more pronounced at midlatitudes. It exhibits a dipolar structure with positive and negative values at scales smaller and larger than Le, respectively. Surface wind power on geostrophic flow results in a significant EKE loss around Le but deposits energy at larger scales. The interior viscous dissipation and bottom drag inferred from the pressure flux convergence act as EKE sink terms. The latter is most efficient at Le while the former is more dominant at smaller scales. There is an evident mismatch between EKE generation and dissipation in the spectral space especially at the midlatitudes. This is reconciled by a dominant forward energy cascade on the equator and a dominant inverse energy cascade at the midlatitudes.


Sign in / Sign up

Export Citation Format

Share Document