Studies of Soil Mineral-Organic Matter Associations and Plant Nutrient Fixation Using Synchrotron X-ray Methods

2021 ◽  
Author(s):  
Tamas Varga ◽  
Ravi Kukkadapu ◽  
Alice Dohnalkova ◽  
Libor Kovarik ◽  
Matthew Marcus ◽  
...  
2009 ◽  
Vol 89 (5) ◽  
pp. 603-610 ◽  
Author(s):  
H Sun ◽  
M Nelson ◽  
F Chen ◽  
J Husch

Water loss from soil minerals has been known to cause errors in the determination of soil organic matter when the loss on ignition (LOI) method is used. Unfortunately, no known published studies reliably quantify the range of structural water in the soil. To do this, 15 common reference minerals were analyzed by LOI to obtain their individual water loss. In addition, 14 upland, loamy soil samples and 3 wetland/hydric soil samples with varied mineral contents were analyzed to collect their X-ray powder diffraction spectra. Based upon X-ray spectra peak intensities, the modal abundance of minerals in each soil sample was determined using the RockJock computer program. The resultant modal weight percentages of all identified minerals in each soil sample were then multiplied by the LOI value for each mineral to obtain the mineral structural water loss (SWL) of that soil sample. For the 17 soil samples analyzed, the range of mineral water loss is 0.56 to 2.45%. Depending on the LOI values of the soil samples, the SWL:LOI ratios range from 0.04 to around 1.00. The SWL:LOI ratios are particularly low for top wetland soil when the LOI value is higher. The ratios are lower for surface soil samples than for subsurface soil samples because of the high LOI values in surface soil samples. Understanding soil mineral water loss and its relation to the LOI patterns from various environments is important for the accurate evaluation of soil organic matter when the LOI method is used. Key words: Mineral, structural water, loss on ignition


Author(s):  
Ana Prates Soares ◽  
Daniel Baum ◽  
Bernhard Hesse ◽  
Andreas Kupsch ◽  
Bernd R. Müller ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 523
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Juan Jiménez-Millán ◽  
Claudia Patricia Quevedo ◽  
Fernando Nieto ◽  
Javier Cuadros ◽  
...  

In this investigation, we showed that high salinity promoted by hydrothermal inputs, reducing conditions of sediments with high content in organic matter, and the occurrence of an appropriate clay mineral precursor provide a suitable framework for low-temperature illitization processes. We studied the sedimentary illitization process that occurs in carbonaceous sediments from a lake with saline waters (Sochagota Lake, Colombia) located at a tropical latitude. Water isotopic composition suggests that high salinity was produced by hydrothermal contribution. Materials accumulated in the Sochagota Lake’s southern entrance are organic matter-poor sediments that contain detrital kaolinite and quartz. On the other hand, materials formed at the central segment and near the lake exit (north portion) are enriched in organic matter and characterized by the crystallization of Fe-sulfides. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectrometry (EDX) data allowed for the identification of illite and illite-dioctahedral vermiculite mixed layers (I-DV), which are absent in the southern sediments. High humidity and temperate climate caused the formation of small-sized metastable intermediates of I-DV particles by the weathering of the source rocks in the Sochagota Lake Basin. These particles were deposited in the low-energy lake environments (middle and north part). The interaction of these sediments enriched in organic matter with the saline waters of the lake enriched in hydrothermal K caused a reducing environment that favored Fe mobilization processes and its incorporation to I-DV mixed layers that acted as mineral precursor for fast low temperature illitization, revealing that in geothermal areas clays in lakes favor a hydrothermal K uptake.


1979 ◽  
Vol 34 (1) ◽  
pp. 48-51 ◽  
Author(s):  
Jürgen Kopf ◽  
Klaus von Deuten ◽  
Bahman Nakhdjavan ◽  
Günter Klar

Abstract The structure of 2,8-dimethyldibenzo[c,g][1,2,5,6]tetrathiaocin (1b) has been determined by X-ray methods and discussed in connection with the preferred conformations of diaryl disulfides. The compound has the anti-form I. The SS-distance is 205.8 pm, the mean CSS-angle 104.1°, and the CSS/SSC-dihedral angle 111.1°.


1988 ◽  
Vol 77 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Karl F. Schoch ◽  
Deborah P. Partlow ◽  
Robert F. Krause

Sign in / Sign up

Export Citation Format

Share Document