Performance analysis of non‐orthogonal multiple access assisted cooperative relay system with channel estimation errors and imperfect successive interference cancellation

Author(s):  
Shailendra Singh ◽  
Matadeen Bansal
Author(s):  
Faeik T. Al Rabee ◽  
Richard D. Gitlin

Non-orthogonal multiple access (NOMA) has been proposed as a promising multiple access (MA) technique in order to meet the requirements for fifth generation (5G) communications and to enhance the performance in internet of things (IoT) networks by enabling massive connectivity, high throughput, and low latency. This paper investigates the bit error rate (BER) performance of two-user uplink power-domain NOMA with a successive interference cancellation (SIC) receiver and taking into account channel estimation errors. The analysis considers two scenarios: perfect (ideal) channel estimation and a channel with estimation errors for various modulations schemes, BPSK, QPSK, and 16-QAM. The simulation results show that, as expected, increasing of the modulation level increases the SIC receiver BER. For example, at a signal-to-noise ratio (SNR) of 5 dB for perfect channel estimation and QPSK modulation, the user that is detected first has a BER of 0.005 compared to 0.14 for the user that is detected with the aid of the SIC receiver. Similarly, the BER of QPSK, assuming 0.25 channel estimation error of user 1, is equal to 0.06 at SNR = 15 dB compared to 0.017 for perfect estimation.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 912
Author(s):  
Minjoong Rim ◽  
Chung Kang

One of the key requirements for next generation wireless or cellular communication systems is to efficiently support a large number of connections for Internet of Things (IoT) applications, and uplink non-orthogonal multiple access (NOMA) schemes can be used for this purpose. In uplink NOMA systems, pilot symbols, as well as data symbols can be superimposed onto shared resources. The error rate performance can be severely degraded due to channel estimation errors, especially when the number of superimposed packets is large. In this paper, we discuss uplink NOMA schemes with channel estimation errors, assuming that quadrature phase shift keying (QPSK) modulation is used. When pilot signals are superimposed onto the shared resources and a large number of devices perform random accesses concurrently to a single resource of the base station, the channels might not be accurately estimated even in high SNR environments. In this paper, we propose an uplink NOMA scheme, which can alleviate the performance degradation due to channel estimation errors.


Author(s):  
Chao-kai Wen ◽  
Jung-chieh Chen ◽  
Pangan Ting ◽  
Cheng-yueh Hsiao ◽  
Yung-yih Jian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document