Characterization of an Italian biotype of clary sage (Salvia sclarea L.) grown in a semi-arid Mediterranean environment

2002 ◽  
Vol 17 (3) ◽  
pp. 191-194 ◽  
Author(s):  
A. Carrubba ◽  
R. la Torre ◽  
R. Piccaglia ◽  
M. Marotti
2020 ◽  
Vol 29 (7) ◽  
pp. 1230-1245 ◽  
Author(s):  
Paulo N. Bernardino ◽  
Wanda De Keersmaecker ◽  
Rasmus Fensholt ◽  
Jan Verbesselt ◽  
Ben Somers ◽  
...  

Geoderma ◽  
2017 ◽  
Vol 299 ◽  
pp. 32-42 ◽  
Author(s):  
Vojtěch Ettler ◽  
Martin Chren ◽  
Martin Mihaljevič ◽  
Petr Drahota ◽  
Bohdan Kříbek ◽  
...  

2014 ◽  
Vol 45 (4) ◽  
pp. 176 ◽  
Author(s):  
Mario Pirastru ◽  
Marcello Niedda ◽  
Mirko Castellini

Many hillslopes covered with maquis in the semi-arid Mediterranean environment have been cleared in recent decades. There is little information on what effect this has on the hydrology of the soil. We compared the hydraulic properties of the soil and the subsurface hydrological dynamics on two adjacent sites on a hillslope. One site was covered with maquis, the other with grass. The grass started to grow some 10 years ago, after the maquis had been cleared and the soil had been ploughed. Our study found that the hydraulic properties and the hydrological dynamics of the maquis and the grassed soil differed greatly. The grassed soil had less organic matter and higher apparent density than did the soil covered in maquis. Moreover, the maquis soil retained more water than the grassed soil in the tension range from saturation to 50 cm of water. Infiltration tests performed in summer and in winter indicated that the field saturated hydraulic conductivity (K<sub>fs</sub>) of the maquis soil was higher than that of the grassy soil. However the data showed that the K<sub>fs</sub> of the two soils changed with the season. In the maquis soil the K<sub>fs</sub> increased from summer to winter. This was assumed to be due to water flowing more efficiently through wet soil. By contrast, in the grassy soil the K<sub>fs</sub> decreased from summer to winter. This was because the desiccation cracks closed in the wet soil. As result, the influence of the land use change was clear from the K<sub>fs</sub> measurements in winter, but less so from those in the summer. Changes in land use altered the dynamics of the infiltration, subsurface drainage and soil water storage of the soil. The maquis soil profile never saturated completely, and only short-lived, event based perched water tables were observed. By contrast, soil saturation and a shallow water table were observed in the grass covered site throughout the wet season. The differences were assumed to be due to the high canopy interception of the maquis cover, and to the macropores in the grassed soil being destroyed after the maquis had been cleared and the soil ploughed. The results of this work are helpful for predicting the changes in the hydraulic properties of the soil and in the near-surface hydrological processes in similar Mediterranean environments where the natural vegetation has been cleared. These changes must be taken into consideration when developing rainfall-runoff models for flood forecasting and water yield evaluation.


2006 ◽  
Vol 05 (3) ◽  
pp. 8-20
Author(s):  
José Carlos Oliveira SANTOS ◽  
Lionete Dantas NUNES ◽  
Sylvia Berenice NÓBREGA ◽  
Dantas José Pires PUZINSKI ◽  
Antonio Gouveia SOUZA

A thermal analysis has been applied to characterization of food and food products. Taking into account the problems of desertification and agricultural practices able to provide income to the population at the semi-arid region of Northeastern Brazil, this work presents the results of the chemical, thermal and kinetic characterization by thermogravimetry and differential scanning calorimetry of the seed derivatives of favelone (cnidoscolus quercifolius), aiming at the application of these materials as an alternative of food source for animals and for the human population at this brazilian region.


2018 ◽  
Author(s):  
Bruce F Murray ◽  
Michael A Reid ◽  
Shu-Biao Wu

Duma florulenta and Acacia stenophylla are two ecologically important but understudied species that naturally occur on the floodplains and riverbanks of Australia’s arid and semi-arid river systems. This paper describes the discovery and characterization of 12 and 13 polymorphic microsatellite markers for D. florulenta and A. stenophylla respectively. The number of alleles per locus for D. florulenta ranged from 2-12 with an average of 6.1. Across all samples, observed and expected heterozygosities ranged from 0.026 to 0.784 and 0.026 to 0.824 respectively and mean polymorphic information content was equal to 0.453. For A. stenophylla, the number of alleles per locus ranged between 2 and 8 with an overall mean of 4.8. Across all samples, observed and expected heterozygosities ranged from 0.029 to 0.650 and 0.029 to 0.761 respectively and mean polymorphic information content was 0.388. The developed suites of 12 and 13 microsatellite markers for D. florulenta and A. stenophylla respectively provide opportunity for novel research into mechanisms of gene flow, dispersal and breeding system and how they operate under the extreme variability these species are exposed to in the environments in which they live.


Sign in / Sign up

Export Citation Format

Share Document