canopy interception
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 52)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 4 ◽  
Author(s):  
Cristián Frêne ◽  
Mariela Núñez-Ávila ◽  
Ben Castro ◽  
Juan J. Armesto

Rainfall partitioning in secondary forests from southern Chile is relevant in the climate change scenario, in which a 30% reduction in summer precipitation has been projected for the temperate region. Logging and degradation of old-growth forests has resulted in extensive secondary forests, over large areas of the Chiloé Archipelago as well as the mainland. These secondary forests are simple tree communities, dominated by two broad-leaved tree species, evergreen Drimys winteri and Nothofagus nitida, and have the potential to provide multiple benefits to society, including water provision, soil protection, and wood-derived products. Here, we ask how southern South American secondary rainforests modulate rainwater redistribution considering precipitation partitioning. We evaluated the seasonality of throughfall and stemflow components of precipitation, to assess ecohydrological processes for water regulation in a climate change context, where summer droughts have been more frequent in the last decade. The partitioning of gross rainfall (TP) into throughfall (TH), stemflow (ST), and canopy interception (IN) in relation to forest structure, was assessed in four forest plots (400 m2 each) in Senda Darwin Biological Station, Chiloé. TH and ST were measured seasonally for 35 rainfall events from 2019 to 2021. IN water losses were estimated from the mass balance equation. Results indicate that the secondary rainforest intercepts 33% of TP (990 mm of the total monitored), where 59% of the volume corresponds to TH and 7% to ST, which taken together account for nearly 100% the rainwater that reaches the forest floor. Canopy IN varied seasonally from 25 to 40% of total rainfall, with maximum values occurring in the growing season (spring-summer). We found no statistical relation between ST and forest structural parameters (DBH, Basal Area). We explored the contribution of the two dominant tree species to ST and discuss the results in a climate change context. Finally, we propose to incorporate this hydrologic knowledge into adaptive forest management strategies to maximize ecosystem benefits to people. If these ecosystems were properly managed, they have the potential to provide multiple benefits to society within this century, such as water provision and soil protection in addition to carbon sequestration in biomass.


2021 ◽  
Vol 13 (23) ◽  
pp. 4884
Author(s):  
Jilong Chen ◽  
Haiyun Tan ◽  
Yongyue Ji ◽  
Qingqing Tang ◽  
Lingyun Yan ◽  
...  

Highland barley is the unique germplasm resource and dominant crop in Tibet with low-level precipitation and a severe shortage of available water resources. Understanding the characteristics and dynamics of evapotranspiration (ET) components (vegetation transpiration (Ec), soil evaporation (Es), and canopy interception evaporation (Ei)) of highland barley can help better optimize water management practices. The seasonal and interannual variations in ET components of highland barley were investigated using the PML-V2 ET product during 2001–2020. The results suggested that Es was the most important ET component and accounted for 77% of total ET for highland barley in Tibet. ET components varied obviously over the altitude, Es, and Es/ET ratio; a decreasing trend was observed with the increase in altitude from 3500 m to 3800 m and then this changed to an increasing trend until reaching the altitude of 4100 m, while Ec, Ei, and their ratios presented an opposite changing pattern to that of Es. Seasonal variation in daily ET components of highland barley displayed a parabolic pattern, peaked in August, while the temporal distributions differed considerably among different ET component ratios. The seasonal variations in ET components were correlated significantly with air temperature, relative humidity, and precipitation, while ET components ratios were more influenced by the environment, irrigation practice, and management rather than meteorological variables. Es and its ratio in highland barley decreased significantly during 2001–2020, while the Ec/ET ratio generally showed an opposite trend to the Es/ET ratio, and Ei and its ratio presented an insignificantly decreasing trend. The interannual variations in ET components were not correlated significantly with meteorological variables, while Ei was more influenced by meteorological variables, especially the precipitation characteristics.


2021 ◽  
Vol 69 (4) ◽  
pp. 436-446
Author(s):  
Martin Jančo ◽  
Pavel Mezei ◽  
Andrej Kvas ◽  
Michal Danko ◽  
Patrik Sleziak ◽  
...  

Abstract The interception process in subalpine Norway spruce stands plays an important role in the distribution of throughfall. The natural mountain spruce forest where our measurements of throughfall and gross precipitation were carried out, is located on the tree line at an elevation of 1,420 m a.s.l. in the Western Tatra Mountains (Slovakia, Central Europe). This paper presents an evaluation of the interception process in a natural mature spruce stand during the growing season from May to October in 2018–2020. We also analyzed the daily precipitation events within each growing season and assigned to them individual synoptic types. The amount and distribution of precipitation during the growing season plays an important role in the precipitation-interception process, which confirming the evaluation of individual synoptic situations. During the monitored growing seasons, precipitation was normal (2018), sub-normal (2019) and above-normal (2020) in comparison with long-term precipitation (1988–2017). We recorded the highest precipitation in the normal and above-normal precipitation years during the north-eastern cyclonic synoptic situation (NEc). During these two periods, interception showed the lowest values in the dripping zone at the crown periphery, while in the precipitation sub-normal period (2019), the lowest interception was reached by the canopy gap. In the central crown zone near the stem, interception reached the highest value in each growing season. In the evaluated vegetation periods, interception reached values in the range of 19.6–24.1% of gross precipitation total in the canopy gap, 8.3–22.2% in the dripping zone at the crown periphery and 45.7–51.6% in the central crown zone near the stem. These regimes are expected to change in the Western Tatra Mts., as they have been affected by windstorms and insect outbreaks in recent decades. Under disturbance regimes, changes in interception as well as vegetation, at least for some period of time, are unavoidable.


Author(s):  
Gian Carlos Poleto ◽  
Dione Richer Momolli ◽  
Mauro Valdir Schumacher ◽  
Aline Aparecida Ludvichak ◽  
Kristiana Fiorentin dos Santos ◽  
...  

Hydrological behavior in reforested watersheds is different from that under other forms of cover. The variation may be related to aspects intrinsic to species, planting density, physiological maturity, management system and climatic conditions. Periodically, climatic anomalies such as the case of La Ninã are observed, and these are responsible for the alteration of the rainfall regime and consequently generate water deficits in the southern region of Brazil. Water deficit is responsible for reducing growth and productivity for the Eucalyptus genus, in addition to causing changes in hydrological behavior in reforested watersheds. Accordingly, this study compared the partition of rainfall in throughfall, stemflow and canopy interception of eucalyptus trees submitted or not to partial exclusion of precipitation. In the open field, 3 rainfall collectors were installed, and in the stand, for each rain exclusion treatment, 9 throughfall collectors and 9 stemflow collectors were installed. Every two weeks for 12 months, the volume of the collectors was measured. The quantified precipitation was 1627 mm over a year. In the treatment without exclusion, 84.8, 2.9 and 12.3% referred to throughfall, stemflow and canopy interception, respectively, while in the treatment excluding rainfall 80.6, 2.3 and 17.2% referred to throughfall, stemflow and canopy interception. The regression adjustments for throughfall and stemflow showed satisfactory R2 coefficients.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhaoying Zhang ◽  
Yongguang Zhang ◽  
Jing M. Chen ◽  
Weimin Ju ◽  
Mirco Migliavacca ◽  
...  

Remote sensing of solar-induced chlorophyll fluorescence (SIF) provides new possibilities to estimate terrestrial gross primary production (GPP). To mitigate the angular and canopy structural effects on original SIF observed by sensors (SIFobs), it is recommended to derive total canopy SIF emission (SIFtotal) of leaves within a canopy using canopy interception (i0) and reflectance of vegetation (RV). However, the effects of the uncertainties in i0 and RV on the estimation of SIFtotal have not been well understood. Here, we evaluated such effects on the estimation of GPP using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model. The SCOPE simulations showed that the R2 between GPP and SIFtotal was clearly higher than that between GPP and SIFobs and the differences in R2 (ΔR2) tend to decrease with the increasing levels of uncertainties in i0 and RV. The resultant ΔR2 decreased to zero when the uncertainty level in i0 and RV was ~30% for red band SIF (RSIF, 683 nm) and ~20% for far-red band SIF (FRSIF, 740 nm). In addition, as compared to the TROPOspheric Monitoring Instrument (TROPOMI) SIFobs at both red and far-red bands, SIFtotal derived using any combination of i0 (from MCD15, VNP15, and CGLS LAI products) and RV (from MCD34, MCD19, and VNP43 BRDF products) showed comparable improvements in estimating GPP. With this study, we suggest a way to advance our understanding in the estimation of a more physiological relevant SIF datasets (SIFtotal) using current satellite products.


2021 ◽  
Vol 292 ◽  
pp. 112710
Author(s):  
André Ferreira Rodrigues ◽  
Carlos Rogério de Mello ◽  
Udo Nehren ◽  
João Pedro de Coimbra Ribeiro ◽  
Vanessa Alves Mantovani ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Scott T. Allen ◽  
William H. Conner

The interception of precipitation by plant canopies can alter the amount and spatial distribution of water inputs to ecosystems. We asked whether canopy interception could locally augment water inputs to shrubs by their crowns funneling (freshwater) precipitation as stemflow to their bases, in a wetland where relict overstory trees are dying and persisting shrubs only grow on small hummocks that sit above mesohaline floodwaters. Precipitation, throughfall, and stemflow were measured across 69 events over a 15-months period in a salinity-degraded freshwater swamp in coastal South Carolina, United States. Evaporation of intercepted water from the overstory and shrub canopies reduced net precipitation (stemflow plus throughfall) across the site to 91% of gross (open) precipitation amounts. However, interception by the shrub layer resulted in increased routing of precipitation down the shrub stems to hummocks – this stemflow yielded depths that were over 14 times larger than that of gross precipitation across an area equal to the shrub stem cross-sectional areas. Through dimensional analysis, we inferred that stemflow resulted in local augmentation of net precipitation, with effective precipitation inputs to hummocks equaling 100–135% of gross precipitation. Given that these shrubs (wax myrtle, Morella cerifera) are sensitive to mesohaline salinities, our novel findings prompt the hypothesis that stemflow funneling is an ecophysiologically important mechanism that increases freshwater availability and facilitates shrub persistence in this otherwise stressful environment.


2021 ◽  
Vol 13 (12) ◽  
pp. 2358
Author(s):  
Linjing Qiu ◽  
Yiping Wu ◽  
Zhaoyang Shi ◽  
Yuting Chen ◽  
Fubo Zhao

Quantitatively identifying the influences of vegetation restoration (VR) on water resources is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau (LP) of China since the implementation of VR policy, the way vegetation dynamics influences regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset. The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR and climate change to ET are identified by combining climate scenarios and VR scenarios. The results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which results in a weak variation in TET at an annual scale and an increased TET is only shown in summer. Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These findings imply that climate change might play a dominant role in ET variability on the LP, and this work emphasizes the importance of comprehensively considering the interactions among climate factors to assess the relative contributions of VR and climate change to ET.


Sign in / Sign up

Export Citation Format

Share Document