Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods

2006 ◽  
Vol 53 (2) ◽  
pp. 305-332 ◽  
Author(s):  
H. Ding ◽  
C. Shu ◽  
K. S. Yeo ◽  
D. Xu
2020 ◽  
Vol 141 ◽  
pp. 110340 ◽  
Author(s):  
Muhammad Asif ◽  
Zar Ali Khan ◽  
Nadeem Haider ◽  
Qasem Al-Mdallal

Author(s):  
Zhaoyuan Guo ◽  
Qiang Wang ◽  
Ping Dong ◽  
Chi Zhou ◽  
Guotai Feng

Thermal-flow-elastic coupling (TFEC) numerical simulation platform has been an essential platform for designing turbo engines with high performance and efficiency. Generally, TFEC numerical simulation was achieved by predicting thermal and stress fields with finite element methods, while flow fields with finite difference methods, but such calculation was not popular in engineering design, because of too much size of data exchange and lower computing efficiency. However these shortcomings will not exist by using finite difference methods for all of the fields. To establish a three dimensional multifunction numerical simulation platform for turbines for all of the fields, the key technique was studied firstly. The technique included analysis on physical models, establishing of mathematical model equation, usage of curvilinear coordinate platform, construction of high accuracy difference scheme and selection of boundary conditions for multi-field coupling simulation. Then the algorithm including domain decomposition one and parallel one were studied to accelerate the coupling simulation. The purpose was to develop a completed TFEC numerical simulation platform by using of finite difference method and to apply the platform for numerical simulation in turbines. Firstly codes for predicting flow field in passage, thermal and stress fields in solid body were developed. Then a simple TFEC numerical simulation platform for turbines was obtained. The single code for predicting flow field was verified with experimental data, and the other two codes were validated with thermal and elastic analytic solutions respectively. And satisfying results were obtained. Then the code for thermal-flow was validated with experimental data of Mark II blade, and the code for thermal-elastic coupling simulations was validated with a cylinder by an analytic solutions. All of these are good basics for completing TFEC numerical simulation platform using finite difference methods for all of the fields and computing TFEC numerical simulation in a turbo engine.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 206
Author(s):  
María Consuelo Casabán ◽  
Rafael Company ◽  
Lucas Jódar

This paper deals with the search for reliable efficient finite difference methods for the numerical solution of random heterogeneous diffusion reaction models with a finite degree of randomness. Efficiency appeals to the computational challenge in the random framework that requires not only the approximating stochastic process solution but also its expectation and variance. After studying positivity and conditional random mean square stability, the computation of the expectation and variance of the approximating stochastic process is not performed directly but through using a set of sampling finite difference schemes coming out by taking realizations of the random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic expressions collapsing the approach is avoided keeping reliability. Results are simulated and a procedure for the numerical computation is given.


Sign in / Sign up

Export Citation Format

Share Document