Meshfree lattice Boltzmann flux solver for compressible inviscid flows

Author(s):  
Ningyu Zhan ◽  
Rongqian Chen ◽  
Jiaqi Liu ◽  
Ruofan Qiu ◽  
Yancheng You

2014 ◽  
Vol 6 (4) ◽  
pp. 436-460 ◽  
Author(s):  
C. Shu ◽  
Y. Wang ◽  
C. J. Teo ◽  
J. Wu

AbstractA lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.



2016 ◽  
Vol 8 (6) ◽  
pp. 887-910 ◽  
Author(s):  
L. M. Yang ◽  
C. Shu ◽  
J. Wu

AbstractIn this paper, a hybrid lattice Boltzmann flux solver (LBFS) is proposed for simulation of viscous compressible flows. In the solver, the finite volume method is applied to solve the Navier-Stokes equations. Different from conventional Navier-Stokes solvers, in this work, the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model, while the viscous flux is still approximated by conventional smooth function approximation. The present work overcomes the two major drawbacks of existing LBFS [28–31], which is used for simulation of inviscid flows. The first one is its ability to simulate viscous flows by including evaluation of viscous flux. The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux, which takes a value close to zero in the boundary layer and one around the strong shock wave. Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.





2017 ◽  
Vol 48 (9) ◽  
pp. 811-826
Author(s):  
Zheng Li ◽  
Mo Yang ◽  
Ya-Ling He ◽  
Yuwen Zhang


Sign in / Sign up

Export Citation Format

Share Document