Terbium oxide‐based solar thermochemical CO 2 splitting cycle: A thermodynamic investigation

2020 ◽  
Vol 10 (4) ◽  
pp. 703-714 ◽  
Author(s):  
Rahul R. Bhosale
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Rahul Bhosale ◽  
Anand Kumar ◽  
Fares AlMomani

The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS) cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2into Tb and O2, whereas the 2nd step corresponds to the production of H2through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2and effect of water splitting temperature (TL) on Gibbs free energy related to the H2production step were examined in detail. The cycle (ηcycle) and solar-to-fuel energy conversion (ηsolar-to-fuel) efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate thatηcycleandηsolar-to-fuelincrease with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH). It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. AtTH=2280 K, by applying 60% heat recuperation, maximumηcycleof 39.0% andηsolar-to-fuelof 47.1% for the Tb-WS cycle can be attained.


1999 ◽  
Vol 09 (PR3) ◽  
pp. Pr3-253-Pr3-258 ◽  
Author(s):  
J. Lédé ◽  
M. Ferrer
Keyword(s):  

2018 ◽  
Author(s):  
Like Li ◽  
Kelvin Randhir ◽  
James F. Klausner ◽  
Ren-Wei Mei ◽  
Nick AuYeung

Fuel ◽  
2021 ◽  
Vol 298 ◽  
pp. 120791
Author(s):  
Francesca Di Lauro ◽  
Claudio Tregambi ◽  
Fabio Montagnaro ◽  
Piero Salatino ◽  
Riccardo Chirone ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7804
Author(s):  
Christoph Falter ◽  
Andreas Sizmann

Hydrogen produced from renewable energy has the potential to decarbonize parts of the transport sector and many other industries. For a sustainable replacement of fossil energy carriers, both the environmental and economic performance of its production are important. Here, the solar thermochemical hydrogen pathway is characterized with a techno-economic and life-cycle analysis. Assuming a further increase of conversion efficiency and a reduction of investment costs, it is found that hydrogen can be produced in the United States of America at costs of 2.1–3.2 EUR/kg (2.4–3.6 USD/kg) at specific greenhouse gas emissions of 1.4 kg CO2-eq/kg. A geographical potential analysis shows that a maximum of 8.4 × 1011 kg per year can be produced, which corresponds to about twelve times the current global and about 80 times the current US hydrogen production. The best locations are found in the Southwest of the US, which have a high solar irradiation and short distances to the sea, which is beneficial for access to desalinated water. Unlike for petrochemical products, the transport of hydrogen could potentially present an obstacle in terms of cost and emissions under unfavorable circumstances. Given a large-scale deployment, low-cost transport seems, however, feasible.


Sign in / Sign up

Export Citation Format

Share Document