Crystal size distribution analysis of plagioclase from gabbro-anorthosite suite of Kuliana, Orissa, eastern India: implications for textural coarsening in a static magma chamber

2015 ◽  
Vol 52 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Tushar Mouli Chakraborti ◽  
Arijit Ray ◽  
Gautam Kumar Deb
Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 740 ◽  
Author(s):  
Dominic Wirz ◽  
Marc Hofmann ◽  
Heike Lorenz ◽  
Hans-Jörg Bart ◽  
Andreas Seidel-Morgenstern ◽  
...  

A novel shadowgraphic inline probe to measure crystal size distributions (CSD), based on acquired greyscale images, is evaluated in terms of elevated temperatures and fragile crystals, and compared to well-established, alternative online and offline measurement techniques, i.e., sieving analysis and online microscopy. Additionally, the operation limits, with respect to temperature, supersaturation, suspension, and optical density, are investigated. Two different substance systems, potassium dihydrogen phosphate (prisms) and thiamine hydrochloride (needles), are crystallized for this purpose at 25 L scale. Crystal phases of the well-known KH2PO4/H2O system are measured continuously by the inline probe and in a bypass by the online microscope during cooling crystallizations. Both measurement techniques show similar results with respect to the crystal size distribution, except for higher temperatures, where the bypass variant tends to fail due to blockage. Thiamine hydrochloride, a substance forming long and fragile needles in aqueous solutions, is solidified with an anti-solvent crystallization with ethanol. The novel inline probe could identify a new field of application for image-based crystal size distribution measurements, with respect to difficult particle shapes (needles) and elevated temperatures, which cannot be evaluated with common techniques.


2018 ◽  
Vol 51 (5) ◽  
pp. 1352-1371 ◽  
Author(s):  
Sigmund H. Neher ◽  
Helmut Klein ◽  
Werner F. Kuhs

A procedure for a fast X-ray-diffraction-based crystal size distribution analysis, named FXD-CSD, is presented. The method enables the user, with minimal sample preparation, to determine the crystal size distribution (CSD) of crystalline powders or polycrystalline materials, derivedviaan intensity scaling procedure from the diffraction intensities of single Bragg spots measured in spotty diffraction patterns with a two-dimensional detector. The method can be implemented on any single-crystal laboratory diffractometer and any synchrotron-based instrument with a fast-readout two-dimensional detector and a precise sample scanning axis. The intensity scaling is achievedviathe measurement of areferencesample with known CSD under identical conditions; the only other prerequisite is that the structure (factors) of bothsampleandreferencematerial must be known. The data analysis is done with a software package written in Python. A detailed account is given of each step of the procedure, including the measurement strategy and the demands on the spottiness of the diffraction rings, the data reduction and the intensity corrections needed, and the data evaluation and the requirements for the reference material. Using commercial laboratory X-ray equipment, several corundum crystal size fractions with precisely known CSD were measured and analysed to verify the accuracy and precision of the FXD-CSD method; a comparison of known and deduced CSDs shows good agreement both in mean size and in the shape of the size distribution. For the used material and diffractometer setup, the crystal size application range is one to several tens of micrometres; this range is highly material and X-ray source dependent and can easily be extended on synchrotron sources to cover the range from below 0.5 µm to over 100 µm. FXD-CSD has the potential to become a generally applicable method for CSD determination in the field of materials science and pharmaceutics, including development and quality management, as well as in various areas of fundamental research in physics, chemistry, chemical engineering, crystallography, the geological sciences and bio-crystallization. It can be used also underin situconditions for studying crystal coarsening phenomena, and delivers precise and accurate CSDs, permitting experimental tests of various theories developed to predict their evolution.


Sign in / Sign up

Export Citation Format

Share Document