Helium isotopes in volcanic rocks from the Okinawa Trough-impact of volatile recycling and crustal contamination

2016 ◽  
Vol 51 ◽  
pp. 376-386 ◽  
Author(s):  
Zenghui Yu ◽  
Shikui Zhai ◽  
Kun Guo ◽  
Yonghua Zhou ◽  
Tong Zong
2019 ◽  
Vol 7 (12) ◽  
pp. 462
Author(s):  
Xue Fang ◽  
Zhigang Zeng ◽  
Siyi Hu ◽  
Xiaohui Li ◽  
Zuxing Chen ◽  
...  

Frequent volcanic activity has occurred in the Okinawa Trough (OT) during the late Quaternary, which attracted much attention to the origin of volcanic rocks. Pumice collected from the seafloor has been extensively investigated, whereas few studies paid attention to the pumice in the sediment. The geochemical compositions of pumice preserved in sediments generally provide insight into past volcanic activity and regional magmatism. Here, we present major and trace element compositions and Sr-Nd-Pb isotope data, together with the established age framework for pumice samples recovered from sediment core S9 in the middle OT (MOT) to investigate their possible formation. Compositionally, the S9 pumice samples are dacite and are characterized by relatively higher Sr (87Sr/86Sr = 0.70480–0.70502) and Pb (206Pb/204Pb = 18.321-18.436, 207Pb/204Pb = 15.622–15.624, and 208Pb/204Pb = 38.52–38.63) and lower Nd (143Nd/144Nd = 0.51272–0.51274) isotope compositions than basalts from the MOT. The geochemical compositions of pumice clasts from different layers of core S9 display no temporal variation trends and vary within narrow ranges. On the basis of the geochemical characteristics of S9 pumice samples, we infer that the parent magma of these samples might generate from hybrid magma through an extensive fractional crystallization process. The Indian Ocean MORB-type mantle was first metasomatized by the subducted Philippine Sea sediments to form the primitive magma; then, followed by assimilation of a small amount of lower crustal component occurred in the lower crust. The long-term magmatism and relatively consistent isotopic compositions indicate that a magma chamber might have existed in the lower crust of the MOT between 11.22 and 12.96 cal. ka BP.


2006 ◽  
Vol 49 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Peng Huang ◽  
Anchun Li ◽  
Ningjing Hu ◽  
Yongtao Fu ◽  
Zhibang Ma

2020 ◽  
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Yuxiang Zhang

Abstract Episodic supercontinental amalgamation has profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere. However, the timing of supercontinent formation has mainly been constrained by the global age spectra of detrital zircon. Here, we show that the zircons in back-arc volcanic rocks not only reflect the evolution of local magmatism but also contain a record of global continental amalgamation events. We found that the young (<100 ka) zircons in volcanic rocks from the Okinawa Trough have old (108 Ma to 2.7 Ga) inherited zircon, which were captured as the magma ascended through the rifting continental crust. Moreover, the ages of the inherited zircons correspond to five supercontinent amalgamation events. Specifically, the Archaean inherited zircons, which have positive ɛHf(t) and low δ18O values, correspond to the formation of juvenile global continental crust. In contrast, the negative ɛHf(t) and high δ18O values of post-Archaean inherited zircons indicate that their parental magma contained recycled, old crust due to the enhanced crustal thickening and crust-mantle interactions during supercontinent assembly. Therefore, inherited zircons in back-arc volcanic rocks not only reflect the evolution of local magmatism but also contain a record of global supercontinental amalgamation events.


2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Haiyan Qi

The in situ element concentrations and the sulfur (S), and lead (Pb) isotopic compositions in anglesite were investigated for samples from seafloor hydrothermal fields in the Okinawa Trough (OT), Western Pacific. The anglesite grains are of two kinds: (1) low Pb/high S primary hydrothermal anglesite (PHA), which is formed by mixing of fluid and seawater, and (2) high Pb/low S secondary supergene anglesite (SSA), which is the product of low-temperature (<100 °C) alteration of galena in the seawater environment. The Ag and Bi in the SSA go through a second enrichment process during the formation of high Pb/low S anglesite by galena alteration, indicating that the SSA and galena, which may be the major minerals host for considerable quantities of Ag and Bi, are potentially Ag-Bi-enriched in the back-arc hydrothermal field. Moreover, REEs, S and Pb in the OT anglesite are likely to have been leached by fluids from local sub-seafloor volcanic rocks and/or sediments. A knowledge of the anglesite is useful for understanding the influence of volcanic rocks, sediments and altered subducted oceanic plate in hydrothermal systems, showing how trace metals behave during the formation of secondary minerals.


2010 ◽  
Vol 29 (4) ◽  
pp. 48-61 ◽  
Author(s):  
Zhigang Zeng ◽  
Shaoxiong Yu ◽  
Xiaoyuan Wang ◽  
Yongtao Fu ◽  
Xuebo Yin ◽  
...  

2017 ◽  
Vol 53 (5) ◽  
pp. 1755-1766 ◽  
Author(s):  
Yuxiang Zhang ◽  
Zhigang Zeng ◽  
Xiaohui Li ◽  
Xuebo Yin ◽  
Xiaoyuan Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-gang Zeng ◽  
Zu-xing Chen ◽  
Yu-xiang Zhang

AbstractMagmatism has profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere, and biosphere in back-arc basins. However, the timing of the magmatism in the Okinawa Trough (OT) is not well constrained by the age spectra of zircons. Here, for the first time, we carry out an integrated study combining in situ analysis of zircon U–Th–Pb and Hf–O isotopes, and trace element compositions of zircons from the volcanic rocks from the southernmost part of the OT. We found that the young (< 100 ka) zircons in these volcanic rocks have old (108 Ma to 2.7 Ga) inherited cores, which were captured as the magma ascended through the rifting continental crust. In particular, the inherited Archean zircons strongly suggest that remnants of the old East Asian continental blocks underlie the embryonic crustal rifting zone. Moreover, the ages of most of the inherited zircons correspond to five supercontinent amalgamation events. Specifically, the Archaean inherited zircons, which have positive εHf(t) and low δ18O values, correspond to the formation of juvenile continental crust. In contrast, the negative εHf(t) and high δ18O values of the post-Archaean inherited zircons indicate that their parental magma contained recycled older crust due to the enhanced crust-mantle interactions during the evolution of the early continental crust. Therefore, the inherited zircons in the back-arc volcanic rocks not only reflect the evolution of the local magmatism, but they also contain a record of the Archaean crustal fragment and of several global continental amalgamation events.


Sign in / Sign up

Export Citation Format

Share Document