supergene enrichment
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Haiyan Qi

The in situ element concentrations and the sulfur (S), and lead (Pb) isotopic compositions in anglesite were investigated for samples from seafloor hydrothermal fields in the Okinawa Trough (OT), Western Pacific. The anglesite grains are of two kinds: (1) low Pb/high S primary hydrothermal anglesite (PHA), which is formed by mixing of fluid and seawater, and (2) high Pb/low S secondary supergene anglesite (SSA), which is the product of low-temperature (<100 °C) alteration of galena in the seawater environment. The Ag and Bi in the SSA go through a second enrichment process during the formation of high Pb/low S anglesite by galena alteration, indicating that the SSA and galena, which may be the major minerals host for considerable quantities of Ag and Bi, are potentially Ag-Bi-enriched in the back-arc hydrothermal field. Moreover, REEs, S and Pb in the OT anglesite are likely to have been leached by fluids from local sub-seafloor volcanic rocks and/or sediments. A knowledge of the anglesite is useful for understanding the influence of volcanic rocks, sediments and altered subducted oceanic plate in hydrothermal systems, showing how trace metals behave during the formation of secondary minerals.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 455
Author(s):  
Ailiang Gu ◽  
Christopher John Eastoe

Cenozoic evaporites (gypsum and anhydrite) in southwestern North America have wide ranges of δ34S (−30 to +22‰; most +4 to +10‰) and δ18OSO4 (+3 to +19‰). New data are presented for five basins in southern Arizona. The evaporites were deposited in playas or perennial saline lakes in closed basins of Oligocene or younger age. Very large accumulations in Picacho, Safford and Tucson Basins have isotope compositions plotting close to a linear δ34S-δ18OSO4 relationship corresponding to mixing of two sources of sulfur: (1) sulfate recycled from Permian marine gypsum and (2) sulfate from weathering of Laramide-age igneous rocks that include porphyry copper deposits. In the large evaporites, sulfate with δ34S > +10‰ is dominantly of Permian or Early Cretaceous marine origin, but has locally evolved to higher values as a result of bacterial sulfate reduction (BSR). Sulfate with δ34S < −10‰ formed following exposure of sulfides, possibly formed during supergene enrichment of a porphyry copper deposit by BSR, and have values of δ18OSO4 higher than those of local acid rock drainage because of participation of evaporated water in BSR. Accumulations of 30 to 100 km3 of gypsum in Picacho and Safford Basins are too large to explain as products of contemporaneous erosion of Permian and Laramide source materials, but may represent recycling of Late Cretaceous to Miocene lacustrine sulfate.


SEG Discovery ◽  
2021 ◽  
pp. 16-27
Author(s):  
William X. Chávez

Abstract Weathering of pyrite and copper sulfide-bearing rocks produces a consistent series of iron- and copper-bearing minerals that reflect vertical and lateral geochemical changes as supergene solutions react with rock and experience loss of oxidizing capacity. Reactive host rocks, comprising feldspars, mafic minerals, chlorite, and carbonates, buffer pH values that limit copper mineral destruction, thus restricting the supergene transport of copper. Generally, rocks that have undergone well-developed hypogene or supergene hydrolysis of aluminosilicates promote copper mobility because they do not react substantially with low-pH supergene solutions generated by oxidation of pyrite and associated copper sulfides. Development of geochemical stratigraphy is characterized by physical and geochemical parameters that determine the maturity of a supergene profile, with cyclical leaching and enrichment periods critical for the production of economically significant copper accumulation. Evidence for multicycle enrichment is recorded by hematite after chalcocite, hanging zones of copper oxides that replace chalcocite, and hematitic capping overlying immature goethitic-pyritic capping. Because pyrite is the most refractory sulfide with respect to chalcocite replacement, geochemically strong supergene enrichment is independent of total copper added to protore and instead is indicated qualitatively by the degree to which chalcocite replaces pyrite. Covellite replacement of chalcopyrite indicates weak copper addition to protore and generally represents the base and lateral extent of supergene enrichment; covellite replacement of chalcocite indicates incipient copper removal by copper-impoverished supergene solutions. Exploration for, and delineation of, mature supergene enrichment profiles benefits from the recognition of paleoweathering cycles and consequent development of mature geochemical stratigraphy.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 620
Author(s):  
Julien Poot ◽  
Michèle Verhaert ◽  
Augustin Dekoninck ◽  
Abdellah Oummouch ◽  
Abdelaziz El Basbas ◽  
...  

The giant Tizert copper deposit is considered as the largest copper resource in the western Anti-Atlas (Morocco). The site is characterized by Cu mineralization carried by malachite, chalcocite, covellite, bornite and chalcopyrite; azurite is not observed. The host rocks are mainly limestones (Formation of Tamjout Dolomite) and sandstones/siltstones (Basal Series) of the Ediacaran/Cambrian transition. The supergene enrichment is most likely related to episodes of uplift/doming (last event since 30 Ma), which triggered the exhumation of primary/hypogene mineralization (chalcopyrite, pyrite, galena, chalcocite I and bornite I), generating their oxidation and the precipitation of secondary/supergene sulfides, carbonates and Fe-oxyhydroxides. The Tizert supergene deposit mainly consists of (i) a residual patchwork of laterite rich in Fe-oxyhydroxides; (ii) a saprolite rich in malachite, or “green oxide zone” where primary structures such as stratification are preserved; (iii) a cementation zone containing secondary sulfides (covellite, chalcocite II and bornite II). The abundance of Cu carbonates results from the rapid neutralization of acidic meteoric fluids, due to oxidation of primary sulfides, by carbonate host rocks. Chlorite is also involved in the neutralization processes in the sandstones/siltstones of the Basal Series, in which supergene clays, such as kaolinite and smectites, subsequently precipitated. At Tizert, as can be highlighted in other supergene Cu-deposits around the world, azurite is absent due to low pCO2 and relatively high pH conditions. In addition to copper, Ag enrichment is also observed in weathered rocks; Fe-oxyhydroxides contain high Zn, As, and Pb contents. However, these secondary enrichments are quite low compared to Cu in the whole Tizert site, which is therefore, considered as relatively homogeneous.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 579
Author(s):  
Carmela Alen J. Tupaz ◽  
Yasushi Watanabe ◽  
Kenzo Sanematsu ◽  
Takuya Echigo ◽  
Carlo Arcilla ◽  
...  

The Intex laterite deposit in Mindoro, Philippines is derived from the weathering of the ultramafic rocks under a tropical climate. This study investigates the several types of serpentines and the effect of the degree of chemical weathering of ultramafic rocks and laterites on the enrichment of Ni in the deposit. The five types of serpentines are differentiated based on their textural features and Raman spectral data. Type I, type II, type III, and type IV serpentines contain a low amount of NiO (average 0.15 wt%), and their formation is linked to the previous exhumation of the ultramafic body. Conversely, type V serpentines show the highest NiO contents (average 1.42 wt%) and have the composition of serpentine-like garnierites, indicating a supergene origin. In the limonite horizon, goethite is the main ore mineral and shows high NiO contents of up to 1.68 wt%, whereas the Mn-oxyhydroxides (i.e., asbolane and lithiophorite–asbolane intermediate) display substantial amounts of CoO (up to 11.3 wt%) and NiO (up to 15.6 wt%). The Ultramafic Index of Alteration (UMIA) and Index of Lateritization (IOL) are used to characterize the different stages of weathering of rocks and laterites. The calculated index values correspond to a less advanced stage of weathering of the Intex laterites compared with the Berong laterites. The Berong deposit is a Ni-Co laterite deposit in the Philippines, which is formed from the weathering of the serpentinized peridotite. The less extreme degree of weathering of the Intex laterites indicates less advanced leaching, and thereby the re-distribution of Ni, Si, and Mg from the limonite towards the saprolite horizon may have resulted in the poor precipitation of talc-like (kerolite-pimelite) and sepiolite-like (sepiolite-falcondoite) phases in the studied saprolite horizon. Nickel in the Intex deposit has undergone supergene enrichment similar to other humid tropical laterite deposits.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Yael Díaz-Acha ◽  
Marc Campeny ◽  
Esperança Tauler ◽  
Josep Bosch ◽  
Joan Carles Melgarejo ◽  
...  

The essential role of Critical Elements (CE) in 21st century economy has led to an increasing demand of these metals and promotes the exploration of non-conventional deposits such as weathering profiles. The present work is focused on the study of a weathering profile located at the Archaeological Park of the Gavà Neolithic Mines, Barcelona, Catalonia, Spain. In the Gavà deposit, acid and oxidising meteoric fluids generated intense weathering during the early Pleistocene, affecting series of Llandoverian black shales and associated syn-sedimentary phosphates. The circulation of these acid fluids at deeper levels of the profile generated supergene vein-like mineralisations comprised of secondary phosphates (e.g., variscite, perhamite, crandallite, phosphosiderite) and sulphates (e.g., jarosite, alunite). This supergene mineralisation is significantly enriched in certain CE (e.g., Ga, Sc, REE, In, Co and Sb) that were mobilised from host rock components and later hosted in the crystal lattice of supergene minerals. Weathering processes and corresponding supergene enrichment of CE at the Gavà deposit could be used as an example to determine exploration guidelines of CE in weathering profiles and associated supergene phosphates worldwide.


2019 ◽  
Vol 26 (3) ◽  
pp. 267-282 ◽  
Author(s):  
Xiaochen Wang ◽  
Qinglin Xia ◽  
Tongfei Li ◽  
Shuai Leng ◽  
Yanling Li ◽  
...  

Abstract. The aim of this study is to delineate and identify various mineralized zones and barren host rocks based on surface and subsurface lithogeochemical data from the Pulang porphyry copper deposit, southwestern China, utilizing the number–size (N-S), concentration–volume (C-V) and power-spectrum–volume (S-V) fractal models. The N-S model reveals three mineralized zones characterized by Cu thresholds of 0.28 % and 1.45 %: <0.28 % Cu represents weakly mineralized zones and barren host rocks, 0.28 %–1.45 % Cu represents moderately mineralized zones, and > 1.45 % Cu represents highly mineralized zones. The results obtained by the C-V model depict four geochemical zones defined by Cu thresholds of 0.25 %, 1.48 % and 1.88 %, representing nonmineralized wall rocks (Cu<0.25 %), weakly mineralized zones (0.25 %–1.48 %), moderately mineralized zones (1.48 %–1.88 %) and highly mineralized zones (Cu>1.88 %). The S-V model is used by performing a 3-D fast Fourier transformation of assay data in the frequency domain. The S-V model reveals three mineralized zones characterized by Cu thresholds of 0.23 % and 1.33 %: <0.23 % Cu represents leached zones and barren host rocks, 0.23 %–1.33 % Cu represents hypogene zones, and >1.33 % Cu represents supergene enrichment zones. All the multifractal models indicate that high-grade mineralization occurs in the central and southern parts of the ore deposit. Their results are compared with the alteration and mineralogical models resulting from the 3-D geological model using a log-ratio matrix. The results show that the S-V model is best at identifying highly mineralized zones in the deposit. However, the results of the C-V model for moderately and weakly mineralized zones are also more accurate than those obtained from the N-S and S-V models.


2019 ◽  
Author(s):  
Xiaochen Wang ◽  
Qinglin Xia ◽  
Tongfei Li ◽  
Shuai Leng ◽  
Yanling Li ◽  
...  

Abstract. The purpose of the paper is to depict various mineralized zones and the barren host rock in accordance with the subsurface and surface lithogeochemical data using the concentration-volume (C-V) and power spectrum-volume (S-V) fractal models within the Pulang copper deposit, southwest China. Results obtained by concentration-volume model depict four geochemical zones defined by Cu thresholds of 0.25 %, 1.38 % and 1.88 %, which represent non-mineralized wall rocks (Cu  1.88 %). S-V model is utilized by performing 3D fast Fourier transformation for assay data in the frequency domain. The S-V method indicates three mineralized zones characterized by Cu threshold values of 0.23 % and 1.33 %. The zones of  1.33 % Cu represent supergene enrichment zones. Both the multifractal models show that high grade mineralization is located at the center and south of Pulang deposit. The results are in contrast with alteration and mineralogical models resulted from the 3D geologic model utilizing the logratio matrix method. Better results were obtained from S-V model to delineate high grade mineralization of Pulang deposit. However, results of C-V method of moderate and weak grade mineralization are more precise than the results gained from S-V method.


Sign in / Sign up

Export Citation Format

Share Document