scholarly journals Zircon record of an Archaean crustal fragment and supercontinent amalgamation in quaternary back-arc volcanic rocks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-gang Zeng ◽  
Zu-xing Chen ◽  
Yu-xiang Zhang

AbstractMagmatism has profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere, and biosphere in back-arc basins. However, the timing of the magmatism in the Okinawa Trough (OT) is not well constrained by the age spectra of zircons. Here, for the first time, we carry out an integrated study combining in situ analysis of zircon U–Th–Pb and Hf–O isotopes, and trace element compositions of zircons from the volcanic rocks from the southernmost part of the OT. We found that the young (< 100 ka) zircons in these volcanic rocks have old (108 Ma to 2.7 Ga) inherited cores, which were captured as the magma ascended through the rifting continental crust. In particular, the inherited Archean zircons strongly suggest that remnants of the old East Asian continental blocks underlie the embryonic crustal rifting zone. Moreover, the ages of most of the inherited zircons correspond to five supercontinent amalgamation events. Specifically, the Archaean inherited zircons, which have positive εHf(t) and low δ18O values, correspond to the formation of juvenile continental crust. In contrast, the negative εHf(t) and high δ18O values of the post-Archaean inherited zircons indicate that their parental magma contained recycled older crust due to the enhanced crust-mantle interactions during the evolution of the early continental crust. Therefore, the inherited zircons in the back-arc volcanic rocks not only reflect the evolution of the local magmatism, but they also contain a record of the Archaean crustal fragment and of several global continental amalgamation events.

2020 ◽  
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Yuxiang Zhang

Abstract Episodic supercontinental amalgamation has profoundly influenced the evolution of the geosphere, hydrosphere, atmosphere and biosphere. However, the timing of supercontinent formation has mainly been constrained by the global age spectra of detrital zircon. Here, we show that the zircons in back-arc volcanic rocks not only reflect the evolution of local magmatism but also contain a record of global continental amalgamation events. We found that the young (<100 ka) zircons in volcanic rocks from the Okinawa Trough have old (108 Ma to 2.7 Ga) inherited zircon, which were captured as the magma ascended through the rifting continental crust. Moreover, the ages of the inherited zircons correspond to five supercontinent amalgamation events. Specifically, the Archaean inherited zircons, which have positive ɛHf(t) and low δ18O values, correspond to the formation of juvenile global continental crust. In contrast, the negative ɛHf(t) and high δ18O values of post-Archaean inherited zircons indicate that their parental magma contained recycled, old crust due to the enhanced crustal thickening and crust-mantle interactions during supercontinent assembly. Therefore, inherited zircons in back-arc volcanic rocks not only reflect the evolution of local magmatism but also contain a record of global supercontinental amalgamation events.


2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Zhigang Zeng ◽  
Zuxing Chen ◽  
Haiyan Qi

The in situ element concentrations and the sulfur (S), and lead (Pb) isotopic compositions in anglesite were investigated for samples from seafloor hydrothermal fields in the Okinawa Trough (OT), Western Pacific. The anglesite grains are of two kinds: (1) low Pb/high S primary hydrothermal anglesite (PHA), which is formed by mixing of fluid and seawater, and (2) high Pb/low S secondary supergene anglesite (SSA), which is the product of low-temperature (<100 °C) alteration of galena in the seawater environment. The Ag and Bi in the SSA go through a second enrichment process during the formation of high Pb/low S anglesite by galena alteration, indicating that the SSA and galena, which may be the major minerals host for considerable quantities of Ag and Bi, are potentially Ag-Bi-enriched in the back-arc hydrothermal field. Moreover, REEs, S and Pb in the OT anglesite are likely to have been leached by fluids from local sub-seafloor volcanic rocks and/or sediments. A knowledge of the anglesite is useful for understanding the influence of volcanic rocks, sediments and altered subducted oceanic plate in hydrothermal systems, showing how trace metals behave during the formation of secondary minerals.


2016 ◽  
Vol 51 ◽  
pp. 376-386 ◽  
Author(s):  
Zenghui Yu ◽  
Shikui Zhai ◽  
Kun Guo ◽  
Yonghua Zhou ◽  
Tong Zong

2020 ◽  
Vol 116 ◽  
pp. 103255 ◽  
Author(s):  
Yaoyao Zhang ◽  
Fengyou Chu ◽  
Zhenggang Li ◽  
Yanhui Dong ◽  
Hao Wang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Zhang ◽  
Xiwu Luan

The Okinawa Trough (OT) is an incipient back-arc basin, but its crustal nature is still controversial. Gravity inversion along with sediment and lithospheric mantle density modeling are used to map the regional Moho depth and crustal thickness variations of the OT and its adjacent areas. The gravity inversion result shows that the crustal thicknesses are 17–22 km at the northern OT, 11–19 km at the central OT, and 7–19 km at the southern OT. Because of the crust with a thickness larger than 17 km, the slow southward arc movement, and scarce contemporaneous volcanisms, the northern OT should be in the stage of early back-arc extension. All of the moderate crustal thickness, high heat flow, and intense volcanism at the central OT indicate that this region is probably in the transitional stage from the back-arc rifting to the oceanic spreading. A crust that is only 7 km thick, lithosphere strength as low as the mid-ocean ridge, and MORB-similar basalts at the southern OT demonstrate that the southern OT is at the early stage of seafloor spreading.


2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Zhigang Zeng ◽  
Xiaohui Li ◽  
Yuxiang Zhang ◽  
Haiyan Qi

Determining the influence of subduction input on back-arc basin magmatism is important for understanding material transfer and circulation in subduction zones. Although the mantle source of Okinawa Trough (OT) magmas is widely accepted to be modified by subducted components, the role of slab-derived fluids is poorly defined. Here, major element, trace element, and Li, O and Mg isotopic compositions of volcanic lavas from the middle OT (MOT) and southern OT (SOT) were analyzed. Compared with the MOT volcanic lavas, the T9-1 basaltic andesite from the SOT exhibited positive Pb anomalies, significantly lower Nd/Pb and Ce/Pb ratios, and higher Ba/La ratios, indicating that subducted sedimentary components affected SOT magma compositions. The δ7Li, δ18O, and δ26Mg values of the SOT basaltic andesite (−5.05‰ to 4.98‰, 4.83‰ to 5.80‰ and −0.16‰ to −0.09‰, respectively) differed from those of MOT volcanic lavas. Hence, the effect of the Philippine Sea Plate subduction component, (low δ7Li and δ18O and high δ26Mg) on magmas in the SOT was clearer than that in the MOT. This contrast likely appears because the amounts of fluids and/or melts derived from altered oceanic crust (AOC, lower δ18O) and/or subducted sediment (lower δ7Li, higher δ18O and δ26Mg) injected into magmas in the SOT are larger than those in the MOT and because the injection ratio between subducted AOC and sediment is always >1 in the OT. The distance between the subducting slab and overlying magma may play a significant role in controlling the differences in subduction components injected into magmas between the MOT and SOT.


Sign in / Sign up

Export Citation Format

Share Document