scholarly journals Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder

2016 ◽  
Vol 37 (9) ◽  
pp. 3214-3223 ◽  
Author(s):  
James W. Murrough ◽  
Chadi G. Abdallah ◽  
Alan Anticevic ◽  
Katherine A. Collins ◽  
Paul Geha ◽  
...  
2020 ◽  
Author(s):  
Tingting An ◽  
Zhenhua Song ◽  
Jin-Hui Wang

Abstract Background Major depressive disorder (MDD) is a disease that seriously endangers human health and mental state. Chronic stress and lack of reward may reduce the function of the brain's reward circuits, leading to major depressive disorder. The effect of reward treatment on chronic stress-induced depression-like behaviors and its molecular mechanism in the brain remain unclear.Methods Mice were divided into the groups of control, chronic unpredictable mild stress (CUMS), and CUMS-companion. Mice of CUMS group was performed by CUMS for 4 weeks, and CUMS-companion group was treated by CUMS accompanied with companion. The tests of sucrose preference, Y-maze, and forced swimming were conducted to assess depression-like behaviors or resilience. High-throughput sequencing was used to analyze mRNA and miRNA profiles in the medial prefrontal cortex harvested from control, CUMS-MDD (mice with depression-like behaviors in CUMS group), Reward-MDD (mice with depression-like behaviors in CUMS-companion group), CUMS-resilience (resilient mice in CUMS group), Reward-resilience (resilient mice in CUMS-companion group) mice.Results The results provided evidence that accompanying with companion ameliorated CUMS-induced depression-like behaviors in mice. 45 differentially expressed genes (DEGs) are associated with depression-like behaviors, 8 DEGs are associated with resilience and 59 DEGs are associated with nature reward (companion) were identified. Furthermore, 196 differentially expressed miRNAs were found to be associated with companion. Based on the differentially expressed miRNAs and DEGs data, miRNA-mRNA network was established to be associated with companion.Conclusion Taken together, our data here provided a method to ameliorate depression-like behaviors, and numerous potential drug targets for the prevention or treatment of depression.


2018 ◽  
Vol 83 (9) ◽  
pp. S101-S102
Author(s):  
Jenna Reinen ◽  
Alexis Whitton ◽  
Diego Pizzagalli ◽  
Mark Silfstein ◽  
Anissa Abi-Dargham ◽  
...  

2019 ◽  
Author(s):  
Xiaoqian Xiao ◽  
Brandon S. Bentzley ◽  
Eleanor J. Cole ◽  
Claudia Tischler ◽  
Katy H. Stimpson ◽  
...  

AbstractMajor depressive disorder (MDD) is prevalent and debilitating, and development of improved treatments is limited by insufficient understanding of the neurological changes associated with disease remission. In turn, efforts to elucidate these changes have been challenging due to disease heterogeneity as well as limited effectiveness, delayed onset, and significant off-target effects of treatments. We developed a form of repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (lDLPFC) that in an open-label study was associated with remission from MDD in 90% of individuals in 1-5 days (Stanford Accelerated Intelligent Neuromodulation Therapy, SAINT). This provides a tool to begin exploring the functional connectivity (FC) changes associated with MDD remission. Resting-state fMRI scans were performed before and after SAINT in 18 participants with moderate-to-severe, treatment-resistant MDD. FC was determined between regions of interest defined a priori by well-described roles in emotion regulation. Following SAINT, FC was significantly decreased between subgenual cingulate cortex (sgACC) and 3 of 4 default mode network (DMN) nodes. Significant reductions in FC were also observed between the following: DLPFC-striatum, DLPFC-amygdala, DMN-amygdala, DMN-striatum, and amygdala-striatum. Greater clinical improvements were correlated with larger decreases in FC between DLPFC-amygdala and DLPFC-insula, as well as smaller decreases in FC between sgACC-DMN. Greater clinical improvements were correlated with lower baseline FC between DMN-DLPFC, DMN-striatum, and DMN-ventrolateral prefrontal cortex. The multiple, significant reductions in FC we observed following SAINT and remission from depression support the hypothesis that MDD is a state of hyper-connectivity within these networks, and rapid decoupling of network nodes may lead to rapid remission from depression.Significance statementMajor depressive disorder is common and debilitating. It has been difficult to study the brain changes associated with recovery from depression, because treatments take weeks-to-months to become effective, and symptoms fail to resolve in many people. We recently developed a type of magnetic brain stimulation called SAINT. SAINT leads to full remission from depression in 90% of people within 5 days. We used SAINT and functional magnetic resonance imaging to determine how the brain changes with rapid remission from depression. We found changes in areas of the brain associated with emotion regulation. This provides a significantly clearer picture of how the non-depressed brain differs from the depressed brain, which can be used to develop rapid and effective treatments for depression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eisuke Sakakibara ◽  
Yoshihiro Satomura ◽  
Jun Matsuoka ◽  
Shinsuke Koike ◽  
Naohiro Okada ◽  
...  

Near-infrared spectroscopy (NIRS) is a functional neuroimaging modality that has advantages in clinical usage. Previous functional magnetic resonance imaging (fMRI) studies have found that the resting-state functional connectivity (RSFC) of the default mode network (DMN) is increased, while the RSFC of the cognitive control network (CCN) is reduced in patients with major depressive disorder (MDD) compared with healthy controls. This study tested whether the NIRS-based RSFC measurements can detect the abnormalities in RSFC that have been associated with MDD in previous fMRI studies. We measured 8 min of resting-state brain activity in 34 individuals with MDD and 78 age- and gender-matched healthy controls using a whole-head NIRS system. We applied a previously established partial correlation analysis for estimating RSFCs between the 17 cortical regions. We found that MDD patients had a lower RSFC between the left dorsolateral prefrontal cortex and the parietal lobe that comprise the CCN, and a higher RSFC between the right orbitofrontal cortex and ventrolateral prefrontal cortex, compared to those in healthy controls. The RSFC strength of the left CCN was negatively correlated with the severity of depressive symptoms and the dose of antipsychotic medication and positively correlated with the level of social functioning. The results of this study suggest that NIRS-based measurements of RSFCs have potential clinical applications.


Sign in / Sign up

Export Citation Format

Share Document