scholarly journals Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson's disease

2018 ◽  
Vol 40 (4) ◽  
pp. 1317-1327 ◽  
Author(s):  
Xueling Suo ◽  
Du Lei ◽  
Lan Cheng ◽  
Nannan Li ◽  
Panli Zuo ◽  
...  
2021 ◽  
pp. 155005942110582
Author(s):  
Sophie A. Stewart ◽  
Laura Pimer ◽  
John D. Fisk ◽  
Benjamin Rusak ◽  
Ron A. Leslie ◽  
...  

Parkinson's disease (PD) is a neurodegenerative disorder that is typified by motor signs and symptoms but can also lead to significant cognitive impairment and dementia Parkinson's Disease Dementia (PDD). While dementia is considered a nonmotor feature of PD that typically occurs later, individuals with PD may experience mild cognitive impairment (PD-MCI) earlier in the disease course. Olfactory deficit (OD) is considered another nonmotor symptom of PD and often presents even before the motor signs and diagnosis of PD. We examined potential links among cognitive impairment, olfactory functioning, and white matter integrity of olfactory brain regions in persons with early-stage PD. Cognitive tests were used to established groups with PD-MCI and with normal cognition (PD-NC). Olfactory functioning was examined using the University of Pennsylvania Smell Identification Test (UPSIT) while the white matter integrity of the anterior olfactory structures (AOS) was examined using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) analysis. Those with PD-MCI demonstrated poorer olfactory functioning and abnormalities based on all DTI parameters in the AOS, relative to PD-NC individuals. OD and microstructural changes in the AOS of individuals with PD may serve as additional biological markers of PD-MCI.


2013 ◽  
Vol 3 (1) ◽  
pp. 168-178 ◽  
Author(s):  
Brenda Hanna-Pladdy ◽  
Katherine Jones ◽  
Romeo Cabanban ◽  
Rajesh Pahwa ◽  
Kelly E. Lyons

Author(s):  
Haewon Byeon

Because it is possible to delay the progression of dementia if it is detected and treated in an early stage, identifying mild cognitive impairment (MCI) is an important primary goal of dementia treatment. The objectives of this study were to develop a random forest-based Parkinson’s disease with mild cognitive impairment (PD-MCI) prediction model considering health behaviors, environmental factors, medical history, physical functions, depression, and cognitive functions using the Parkinson’s Dementia Clinical Epidemiology Data (a national survey conducted by the Korea Centers for Disease Control and Prevention) and to compare the prediction accuracy of our model with those of decision tree and multiple logistic regression models. We analyzed 96 subjects (PD-MCI = 45; Parkinson’s disease with normal cognition (PD-NC) = 51 subjects). The prediction accuracy of the model was calculated using the overall accuracy, sensitivity, and specificity. Based on the random forest analysis, the major risk factors of PD-MCI were, in descending order of magnitude, Clinical Dementia Rating (CDR) sum of boxes, Untitled Parkinson’s Disease Rating (UPDRS) motor score, the Korean Mini Mental State Examination (K-MMSE) total score, and the K- Korean Montreal Cognitive Assessment (K-MoCA) total score. The random forest method achieved a higher sensitivity than the decision tree model. Thus, it is advisable to develop a protocol to easily identify early stage PDD based on the PD-MCI prediction model developed in this study, in order to establish individualized monitoring to track high-risk groups.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiangbin Chen ◽  
Mengting Liu ◽  
Zhibing Wu ◽  
Hao Cheng

Recent studies have demonstrated structural and functional alterations in Parkinson’s disease (PD) with mild cognitive impairment (MCI). However, the topological patterns of functional brain networks in newly diagnosed PD patients with MCI are unclear so far. In this study, we used functional magnetic resonance imaging (fMRI) and graph theory approaches to explore the functional brain network in 45 PD patients with MCI (PD-MCI), 22 PD patients without MCI (PD-nMCI), and 18 healthy controls (HC). We found that the PD-MCI, PD-nMCI, and HC groups exhibited a small-world architecture in the functional brain network. However, early-stage PD-MCI patients had decreased clustering coefficient, increased characteristic path length, and changed nodal centrality in the default mode network (DMN), control network (CN), somatomotor network (SMN), and visual network (VN), which might contribute to factors for MCI symptoms in PD patients. Our results demonstrated that PD-MCI patients were associated with disrupted topological organization in the functional network, thus providing a topological network insight into the role of information exchange in the underlying development of MCI symptoms in PD patients.


Sign in / Sign up

Export Citation Format

Share Document