scholarly journals The heterogeneous functional architecture of the posteromedial cortex is associated with selective functional connectivity differences in Alzheimer's disease

2020 ◽  
Vol 41 (6) ◽  
pp. 1557-1572
Author(s):  
Wasim Khan ◽  
Ali Amad ◽  
Vincent Giampietro ◽  
Emilio Werden ◽  
Sara De Simoni ◽  
...  
2019 ◽  
Author(s):  
Wasim Khan ◽  
Ali Amad ◽  
Vincent Giampietro ◽  
Emilio Werden ◽  
Sara De Simoni ◽  
...  

AbstractThe posteromedial cortex (PMC) is a key region involved in the development and progression of Alzheimer’s disease (AD). Previous studies have demonstrated a heterogenous functional architecture of the region, with different subdivisions reflecting distinct connectivity profiles. However, little is understood about PMC functional connectivity and its differential vulnerability to AD pathogenesis. Using a data-driven approach, we applied a constrained independent component analysis (ICA) on healthy adults from the Human Connectome Project (HCP) to characterise the distinct functional subdivisions and unique functional-anatomic connectivity patterns of the PMC. These connectivity profiles were subsequently quantified in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, to examine functional connectivity differences in (1) AD patients and cognitively normal (CN) participants and (2) the entire AD pathological spectrum, ranging from CN participants and participants with subjective memory complaints (SMC), through to those with mild cognitive impairment (MCI), and finally, patients diagnosed with AD. Our findings revealed decreased functional connectivity in the anterior precuneus, dorsal posterior cingulate cortex, and the central precuneus in AD patients compared to CN participants. Functional abnormalities in these subdivisions were also related to high amyloid burden and lower hippocampal volumes. Across the entire AD spectrum, functional connectivity of the central precuneus was associated with disease progression and specific deficits in memory and executive function. These findings provide new evidence showing that specific vulnerabilities in PMC functional connectivity are associated with large-scale network disruptions in AD and that these patterns may be useful for elucidating potential biomarkers for measuring disease progression in future work.


2014 ◽  
Vol 11 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Zengqiang Zhang ◽  
Yong Liu ◽  
Bo Zhou ◽  
Jinlong Zheng ◽  
Hongxiang Yao ◽  
...  

2021 ◽  
pp. 1-6
Author(s):  
Julia Schumacher ◽  
Alan J. Thomas ◽  
Luis R. Peraza ◽  
Michael Firbank ◽  
John T. O’Brien ◽  
...  

ABSTRACT Cholinergic deficits are a hallmark of Alzheimer’s disease (AD) and Lewy body dementia (LBD). The nucleus basalis of Meynert (NBM) provides the major source of cortical cholinergic input; studying its functional connectivity might, therefore, provide a tool for probing the cholinergic system and its degeneration in neurodegenerative diseases. Forty-six LBD patients, 29 AD patients, and 31 healthy age-matched controls underwent resting-state functional magnetic resonance imaging (fMRI). A seed-based analysis was applied with seeds in the left and right NBM to assess functional connectivity between the NBM and the rest of the brain. We found a shift from anticorrelation in controls to positive correlations in LBD between the right/left NBM and clusters in right/left occipital cortex. Our results indicate that there is an imbalance in functional connectivity between the NBM and primary visual areas in LBD, which provides new insights into alterations within a part of the corticopetal cholinergic system that go beyond structural changes.


Author(s):  
John Suckling ◽  
Tiago Simas ◽  
Shayanti Chattopadhyay ◽  
Roger Tait ◽  
Li Su ◽  
...  

2009 ◽  
Vol 5 (4S_Part_11) ◽  
pp. P327-P327 ◽  
Author(s):  
Shi-Jiang Li ◽  
Douglas B. Ward ◽  
Zhilin Wu ◽  
Jennifer Jones ◽  
Thomas McRae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document