lewy body dementia
Recently Published Documents


TOTAL DOCUMENTS

583
(FIVE YEARS 213)

H-INDEX

39
(FIVE YEARS 10)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 160
Author(s):  
Valerio Napolioni ◽  
Carolyn A. Fredericks ◽  
Yongha Kim ◽  
Divya Channappa ◽  
Raiyan R. Khan ◽  
...  

We describe the clinical and neuropathologic features of patients with Lewy body spectrum disorder (LBSD) carrying a nonsense variant, c.604C>T; p.R202X, in the glucocerebrosidase 1 (GBA) gene. While this GBA variant is causative for Gaucher’s disease, the pathogenic role of this mutation in LBSD is unclear. Detailed neuropathologic evaluation was performed for one index case and a structured literature review of other GBA p.R202X carriers was conducted. Through the systematic literature search, we identified three additional reported subjects carrying the same GBA mutation, including one Parkinson’s disease (PD) patient with early disease onset, one case with neuropathologically-verified LBSD, and one unaffected relative of a Gaucher’s disease patient. Among the affected subjects carrying the GBA p.R202X, all males were diagnosed with Lewy body dementia, while the two females presented as PD. The clinical penetrance of GBA p.R202X in LBSD patients and families argues strongly for a pathogenic role for this variant, although presenting with a striking phenotypic heterogeneity of clinical and pathological features.


2022 ◽  
Vol 11 (2) ◽  
pp. 01-06
Author(s):  
Robert Skopec

Dementia is an umbrella term for a collection of symptoms that are caused by disorders affecting the brain and impact on memory, thinking, behaviour and emotion. The most common is Alzheimer’s disease, which affects 50-60% of people with dementia. Other types of dementia include vascular dementia, Lewy body dementia and fronto-temporal dementia. Dementia can also sometimes affect people who are under the age of 65. This is known as young onset dementia. Our brains are made up of over 86 billion nerve cells – more than the stars in the Milky Way. Dementia damages nerve cells so they are no longer able to communicate effectively and this impacts on how our body functions.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Philip R. Oldfield ◽  
Jennifer Hibberd ◽  
Byram W. Bridle

This mini-review focuses on the mechanisms of how severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) affects the brain, with an emphasis on the role of the spike protein in patients with neurological symptoms. Following infection, patients with a history of neurological complications may be at a higher risk of developing long-term neurological conditions associated with the α-synuclein prion, such as Parkinson’s disease and Lewy body dementia. Compelling evidence has been published to indicate that the spike protein, which is derived from SARS-CoV-2 and generated from the vaccines currently being employed, is not only able to cross the blood–brain barrier but may cause inflammation and/or blood clots in the brain. Consequently, should vaccine-induced expression of spike proteins not be limited to the site of injection and draining lymph nodes there is the potential of long-term implications following inoculation that may be identical to that of patients exhibiting neurological complications after being infected with SARS-CoV-2. However, further studies are needed before definitive conclusions can be made.


2021 ◽  
Vol 19 ◽  
Author(s):  
Varvara Valotassiou ◽  
Nikolaos Sifakis ◽  
Chara Tzavara ◽  
Evi Lykou ◽  
Niki Tsinia ◽  
...  

Background: Neuropsychiatric symptoms (NPSs) are common in dementia. Their evaluation is based on Neuropsychiatric Inventory (NPI). Neuroimaging studies have tried to elucidate the underlying neural circuits either in isolated NPSs or in specific forms of dementia. Objective: : The objective of this study is to evaluate the correlation of NPS in the NPI with Brodmann areas (BAs) perfusion, for revealing BAs involved in the pathogenesis of NPSs in dementia of various etiologies. Method: We studied 201 patients (82 with Alzheimer's disease, 75 with Frontotemporal dementia, 27 with Corticobasal Syndrome, 17 with Parkinson Disease/Lewy Body Dementia). Exploratory factor analysis was carried out to evaluate underlying groups of BAs, and Principal Component analysis was chosen as extraction method using Varimax rotation. Partial correlation coefficients were computed to explore the association of factors obtained from analysis and NPI items controlling for age, educational yeas, and ACE-R. Results: We found 6 BAs Factors(F); F1 (BAs 8,9,10,11,24,32,44,45,46,47, bilaterally), F2 (Bas 4,5,6,7,23,31, bilaterally), F3 (BAs 19,21,22,37,39,40, bilaterally), F4 (BAs 20,28,36,38, bilaterally), F5 (BAs 25, bilaterally) and F6 (BAs 17,18, bilaterally). Significant and negative correlation was found between NPI1 (delusions) and F3,F6, NPI2 (hallucinations) and F6, NPI7 (apathy) and F1,F4,F5, NPI3 (agitation) - NPI10 (aberrant motor behavior) - NPI12 (eating disorders) and F1. We did not find any significant correlation for NPI4,5,6,8,9,11 (depression, anxiety, euphoria, disinhibition, irritability, sleep disorders, respectively). Conclusion: Several NPSs share the same BAs among different types of dementia, while the manifestation of the rest may be attributed to different neural networks. These findings may have an impact on patients’ treatment.


2021 ◽  
Vol 118 (50) ◽  
pp. e2108489118
Author(s):  
Kristina Fredriksen ◽  
Stefanos Aivazidis ◽  
Karan Sharma ◽  
Kevin J. Burbidge ◽  
Caleb Pitcairn ◽  
...  

GBA1 mutations that encode lysosomal β-glucocerebrosidase (GCase) cause the lysosomal storage disorder Gaucher disease (GD) and are strong risk factors for synucleinopathies, including Parkinson’s disease and Lewy body dementia. Only a subset of subjects with GBA1 mutations exhibit neurodegeneration, and the factors that influence neurological phenotypes are unknown. We find that α-synuclein (α-syn) neuropathology induced by GCase depletion depends on neuronal maturity, the physiological state of α-syn, and specific accumulation of long-chain glycosphingolipid (GSL) GCase substrates. Reduced GCase activity does not initiate α-syn aggregation in neonatal mice or immature human midbrain cultures; however, adult mice or mature midbrain cultures that express physiological α-syn oligomers are aggregation prone. Accumulation of long-chain GSLs (≥C22), but not short-chain species, induced α-syn pathology and neurological dysfunction. Selective reduction of long-chain GSLs ameliorated α-syn pathology through lysosomal cathepsins. We identify specific requirements that dictate synuclein pathology in GD models, providing possible explanations for the phenotypic variability in subjects with GCase deficiency.


2021 ◽  
Author(s):  
Kevin Biglan ◽  
Leanne Munsie ◽  
Kjell A. Svensson ◽  
Paul Ardayfio ◽  
Melissa Pugh ◽  
...  

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Amir H. Meghdadi ◽  
Marija Stevanovic Karic ◽  
Christian Richard ◽  
Shani Waninger ◽  
Marissa Mcconnell ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazunori Sano ◽  
Yasushi Iwasaki ◽  
Yuta Yamashita ◽  
Keiichi Irie ◽  
Masato Hosokawa ◽  
...  

AbstractSerine 129 (S129) phosphorylation of α-synuclein (αSyn) is a central feature of Lewy body (LB) disease pathology. Although the neighboring tyrosine residues Y125, Y133, and Y136 are also phosphorylation sites, little is known regarding potential roles of phosphorylation cross-talk between these sites and its involvement in the pathogenesis of LB disease. Here, we found that αSyn aggregates are predominantly phosphorylated at Y136 in the Lewy body dementia brain, which is mediated by unexpected kinase activity of Casein kinase 2 (CK2). Aggregate formation with S129 and Y136 phosphorylation of recombinant αSyn (r-αSyn) were induced by CK2 but abolished by replacement of S129 with alanine (S129A) in vitro. Mutation of Y136 to alanine (Y136A) promoted aggregate formation and S129 phosphorylation of r-αSyn by CK2 in vitro. Introduction of Y136A r-αSyn oligomers into cultured cells exhibited increased levels of aggregates with S129 phosphorylation compared to wild-type r-αSyn oligomers. In addition, aggregate formation with S129 phosphorylation induced by introduction of wild-type r-αSyn oligomers was significantly attenuated by CK2 inhibition, which resulted in an unexpected increase in Y136 phosphorylation in cultured cells. Our findings suggest the involvement of CK2-related αSyn Y136 phosphorylation in the pathogenesis of LB disease and its potential as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document