scholarly journals Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: An important role for CXCL1

Hepatology ◽  
2015 ◽  
Vol 62 (4) ◽  
pp. 1070-1085 ◽  
Author(s):  
Binxia Chang ◽  
Ming-Jiang Xu ◽  
Zhou Zhou ◽  
Yan Cai ◽  
Man Li ◽  
...  
Nutrition ◽  
2020 ◽  
Vol 75-76 ◽  
pp. 110782 ◽  
Author(s):  
Simona Pompili ◽  
Antonella Vetuschi ◽  
Eugenio Gaudio ◽  
Alessandra Tessitore ◽  
Roberta Capelli ◽  
...  

2021 ◽  
Author(s):  
Zi-Ying Zhan ◽  
Mei Wu ◽  
Yue Shang ◽  
Min Jiang ◽  
Jian Liu ◽  
...  

Taxifolin ameliorated steatohepatitis induced by long-term HFD feeding plus alcohol binge through modulation of SREBP1 and PPARγ, targeting pyroptotic inflammation related IL-1β release and Caspase-1 activation.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Shubha Gosh Dastidar ◽  
Dennis Warner ◽  
Ying Song ◽  
Jeffrey Warner ◽  
Craig McClain ◽  
...  

2021 ◽  
Author(s):  
Qi Guan ◽  
Xinwen Ding ◽  
Lingyue Zhong ◽  
Chuang Zhu ◽  
Pan Nie ◽  
...  

Long term high-fat diet (HF) can cause metabolic disorders, which might induce fatty liver. Fermented whole cereal food exhibit healthy potential due to their unique phytochemical composition and probiotics. In...


2021 ◽  
Vol 22 (4) ◽  
pp. 1647
Author(s):  
Brandi Miller ◽  
Rabina Mainali ◽  
Ravinder Nagpal ◽  
Hariom Yadav

The prevalence of type 2 diabetes mellitus (T2D) is increasing worldwide, and there are no long-term preventive strategies to stop this growth. Emerging research shows that perturbations in the gut microbiome significantly contribute to the development of T2D, while microbiome modulators may be beneficial for T2D prevention. However, microbiome modulators that are effective, safe, affordable, and able to be administered daily are not yet available. Based on our previous pro- and prebiotic studies, we developed a novel synbiotic yogurt comprised of human-origin probiotics and plant-based prebiotics and investigated its impact on diet- and streptozotocin-induced T2D in mice. We compared the effects of our synbiotic yogurt to those of a commercially available yogurt (control yogurt). Interestingly, we found that the feeding of the synbiotic yogurt significantly reduced the development of hyperglycemia (diabetes) in response to high-fat diet feeding and streptozotocin compared to milk-fed controls. Surprisingly, the control yogurt exacerbated diabetes progression. Synbiotic yogurt beneficially modulated the gut microbiota composition compared to milk, while the control yogurt negatively modulated it by significantly increasing the abundance of detrimental bacteria such as Proteobacteria and Enterobacteriaceae. In addition, the synbiotic yogurt protected pancreatic islet morphology compared to the milk control, while the control yogurt demonstrated worse effects on islets. These results suggest that our newly developed synbiotic yogurt protects against diabetes in mice and can be used as a therapeutic to prevent diabetes progression.


2021 ◽  
pp. 113470
Author(s):  
Everett Altherr ◽  
Aundrea Rainwater ◽  
Darian Kaviani ◽  
Qijun Tang ◽  
Ali D. Güler

2021 ◽  
pp. 1-14
Author(s):  
Jian Bao ◽  
Zheng Liang ◽  
Xiaokang Gong ◽  
Jing Yu ◽  
Yifan Xiao ◽  
...  

Background: Alzheimer’s disease (AD) is the most common form of dementia in older adults and extracellular accumulation of amyloid-β (Aβ) is one of the two characterized pathologies of AD. Obesity is significantly associated with AD developing factors. Several studies have reported that high fat diet (HFD) influenced Aβ accumulation and cognitive performance during AD pathology. However, the underlying neurobiological mechanisms have not yet been elucidated. Objective: The objective of this study was to explore the underlying neurobiological mechanisms of HFD influenced Aβ accumulation and cognitive performance during AD pathology. Methods: 2.5-month-old male APP/PS1 mice were randomly separated into two groups: 1) the normal diet (ND) group, fed a standard diet (10 kcal%fat); and 2) the HFD group, fed a high fat diet (40 kcal%fat, D12492; Research Diets). After 4 months of HFD or ND feeding, mice in the two groups were subjected for further ethological, morphological, and biochemical analyses. Results: A long-term HFD diet significantly increased perirenal fat and impaired dendritic integrity and aggravated neurodegeneration, and augmented learning and memory deficits in APP/PS1 mice. Furthermore, the HFD increased beta amyloid cleaving enzyme 1 (BACE1) dephosphorylation and SUMOylation, resulting in enhanced enzyme activity and stability, which exacerbated the deposition of amyloid plaques. Conclusion: Our study demonstrates that long-term HFD consumption aggravates amyloid-β accumulation and cognitive impairments, and that modifiable lifestyle factors, such as obesity, can induce BACE1 post-modifications which may contribute to AD pathogenesis.


2022 ◽  
Author(s):  
Somayeh Aslani ◽  
Saman Bahrambeigi ◽  
Davoud Sanajou

Despite dietary/lifestyle modifications as well as glycemic and lipid control, non-alcoholic fatty liver disease (NAFLD) imposes a considerable risk to the patients by advancing to non-alcoholic steatohepatitis (NASH). The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor for advanced glycation end products (RAGE), against circulating indices of liver injury in high fat diet-induced diabetic mice. FPS-ZM1 at 0.5. 1, and 2 mg/kg (orally) was administered for 2 months, starting 4 months after provision of the high-fat diet. Tests for glucose homeostasis, liver injury markers, and hepatic/plasma miR-21 expressions were performed. FPS-ZM1 attenuated diabetes-induced elevations in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLD), and alpha glutathione-S-transferase (α-GST) as well as alkaline phosphatase (ALP) and gamma-glutamyl transpeptidase (GGT). It also decreased diabetes-associated elevations in serum ferritin and plasma cytokeratin 18 fragments. Additionally, FPS-ZM1 down-regulated elevated expressions of miR-21 in the liver and plasma of diabetic mice. These findings highlight the benefits of FPS-ZM in alleviating liver injury in mice evoked by high-fat diet-induced type 2 diabetes and suggest FPS-ZM1 as a new potential adjunct to the conventional diet/lifestyle modification and glycemic control in diabetics.


2016 ◽  
Vol 60 (1) ◽  
pp. 28536 ◽  
Author(s):  
Noemi A. V. Roza ◽  
Luiz F. Possignolo ◽  
Adrianne C. Palanch ◽  
José A. R. Gontijo

Sign in / Sign up

Export Citation Format

Share Document