scholarly journals Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: Role of nitric oxide

Hepatology ◽  
1997 ◽  
Vol 25 (2) ◽  
pp. 361-367 ◽  
Author(s):  
A Casini ◽  
E Ceni ◽  
R Salzano ◽  
P Biondi ◽  
M Parola ◽  
...  
Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 113 ◽  
Author(s):  
Murali Ganesan ◽  
Larisa Poluektova ◽  
Chijioke Enweluzo ◽  
Kusum Kharbanda ◽  
Natalia Osna

Hepatocyte apoptosis is a crucially important mechanism for liver disease pathogenesis, and the engulfment of apoptotic bodies (AB) by non-parenchymal cells serves as a leading mechanism of inflammation and fibrosis progression. Previously, we have shown that hepatitis C virus (HCV) and alcohol metabolites induce massive apoptosis in hepatocytes and the spread of HCV-infection to the neighboring uninfected cells. Here, we hypothesize that the capturing of AB by non-parenchymal cells, macrophages and hepatic stellate cells (HSC) changes their phenotype to promote inflammation and fibrosis. In this regard, we generated AB from Huh7.5CYP2E1 (RLW) cells also treated with an acetaldehyde-generating system (AGS) and incubated them with human monocyte-derived macrophages (MDMs) and HSC (LX2 cells). Activation of inflammasomes and pro-fibrotic markers has been tested by RT-PCR and linked to HCV expression and AGS-induced lipid peroxidation in RLW cells. After exposure to AB we observed activation of inflammasomes in MDMs, with a higher effect of AB HCV+, further enhanced by incubation of MDMs with ethanol. In HSC, activation of inflammasomes was modest; however, HCV and AGS exposure induced pro-fibrotic changes. We conclude that HCV as well as lipid peroxidation-adducted proteins packaged in AB may serve as a vehicle for delivery of parenchymal cell cargo to non-parenchymal cells to activate inflammasomes and pro-fibrotic genes and promote liver inflammation and fibrosis.


1991 ◽  
Vol 289 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Jeffrey C. Geesin ◽  
Laura J. Hendricks ◽  
Joel S. Gordon ◽  
Richard A. Berg

Author(s):  
Zhenguo Liu ◽  
Juan Wang ◽  
Wu Xing ◽  
Yingqiong Peng ◽  
Yan Huang ◽  
...  

Author(s):  
Zilong Li ◽  
Ping Li ◽  
Yunjie Lu ◽  
Donglin Sun ◽  
Xiaoying Zhang ◽  
...  

2018 ◽  
Vol 27 (2) ◽  
pp. 115-121
Author(s):  
Mona A. Abu El Makarem ◽  
Ghada M. El-Sagheer ◽  
Moustafa A. Abu El-Ella

Objective: To investigate the possible role of signal transducer and activator of transcription 5 (STAT5) in the pathogenesis of liver fibrosis in Egyptian patients with chronic hepatitis C (CHC) virus infection and its relation to hepatic stellate cells (HSC). Subjects and Methods: Sixty-five patients (46 males and 19 females) were divided into 4 groups based on the severity of fibrosis as detected by Fibroscan as follows: F1, n = 15; F2, n = 21; F3, n = 13; and F4, n = 16. Twenty age- and gender-matched healthy persons volunteered as controls. The serum levels of STAT5, TGF-β1, α-smooth muscle actin (α-SMA), fasting blood sugar, and fasting insulin, as well as homeostasis model assessment of insulin resistance (HOMA-IR), were determined and compared for all groups. The usefulness of the studied serum biomarkers for predicting liver fibrosis was evaluated using a receiver operating characteristic curve. Results: Serum levels of STAT5 were significantly lower in patients compared to controls (9.69 ± 5.62 vs. 14.73 ± 6.52, p ≤ 0.001); on the contrary, TGF-β1, α-SMA, and HOMA-IR were significantly higher in patients compared to controls (mean: 1,796.04 vs. 1,636.94; 14.94 vs. 8.1; and 7.91 vs. 4.18; p ≤ 0.01 and 0.001, respectively). TGF-β1 and α-SMA showed a progressive increase with advancing severity of hepatic fibrosis (mean TGF-β1: 2,058.4 in F1-F2 and 1,583.8 in F3-F4, p ≤ 0.04; mean α-SMA: 13.59 in F1-F2 and 16.62 in F3-F4, p ≤ 0.05). STAT5 had a significant negative correlation with TGF-β1 (p ≤ 0.001), while no correlation was detected with α-SMA (p ≤ 0.8). Conclusions: STAT5 may play a significant role in hepatic fibrogenesis through the induction of TGF-β1 but not through the activation of hepatic stellate cells.


Sign in / Sign up

Export Citation Format

Share Document