NRSF deficiency leads to abnormal postnatal development of dentate gyrus and impairment of progenitors in subgranular zone of hippocampus

Hippocampus ◽  
2021 ◽  
Author(s):  
Yan‐Cong Wang ◽  
Pu Liu ◽  
Ling‐Yun Yue ◽  
Fang Huang ◽  
Yu‐Xia Xu ◽  
...  
QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
A A A Baraka ◽  
K A Hafez ◽  
A I A Othman ◽  
A M M Sadek

Abstract Introduction In recent year deterioration in cognitive, learning, and memory become one of the significant problems in human life. Hippocampus is a pivotal part of the brain’s limbic system which serves a critical role in memory, learning process and regulating the emotions. In most regions of the brain, neurons are generated only at specific periods of early development, and not born in the adulthood. In contrast, hippocampal neurons are generated throughout development and adult life. The hippocampal dentate gyrus was reported to be one of the few regions of the mammalian brain where neurogenesis continue to occur throughout adulthood. The neurogenesis in the dentate gyrus was thought to play an important role in hippocampus-dependent learning and memory. The hippocampal formation is composed of the hippocampus proper, the dentate gyrus and the subiculum. The hippocampus proper is the largest part and is subdivided into fields designated as Cornu Ammonis or Ammon’s horn (CA) from CA1 to CA4. Ammon's horn is continuous with the subiculum, which acts as the main output source of the hippocampal formation. Aim of the Study To study the postnatal development of the hippocampal formation. Materials and Methods Five male albino rats from the following postnatal ages day 1, week 1, week 2, week3 and week 4 were studied by histological, immunohistochemical, and morphometric methods. Results The general architecture of the hippocampus proper with its polymorphic, pyramidal, and molecular layers was present at day1, whereas the details of the adult structure appeared at week 2. In the dentate gyrus, distinct lamination appeared at week 1 and its maturation continued with the production of neurons at the interhilar zone that peaked at week 2. The number and density of pyramidal axons and dendrites increase by age. Astrocytes increased in size and staining affinity for glial filaments, and acquired a stellate shape with age. Furthermore, the number of granule cell layers increased concomitantly with the increase in thickness of the molecular and polymorphic layers of both the hippocampus proper and the dentate gyrus. Conclusion The important sequences of events in the growth and maturation of the hippocampal formation in male albino rat occurred in the first 2 postnatal weeks.


1992 ◽  
Vol 144 (2) ◽  
pp. 160-166 ◽  
Author(s):  
M.M Pérez-Delgado ◽  
P.G. Serrano-Aguilar ◽  
A. Castañeyra-Perdomo ◽  
R. Ferres-Torres

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 277 ◽  
Author(s):  
Daniel A. Berg ◽  
Allison M. Bond ◽  
Guo-li Ming ◽  
Hongjun Song

Adult neurogenesis occurs in the dentate gyrus in the mammalian hippocampus. These new neurons arise from neural precursor cells named radial glia-like cells, which are situated in the subgranular zone of the dentate gyrus. Here, we review the emerging topic of precursor heterogeneity in the adult subgranular zone. We also discuss how this heterogeneity may be established during development and focus on the embryonic origin of the dentate gyrus and radial glia-like stem cells. Finally, we discuss recently developed single-cell techniques, which we believe will be critical to comprehensively investigate adult neural stem cell origin and heterogeneity.


2009 ◽  
Vol 35 (3) ◽  
pp. 465-472 ◽  
Author(s):  
In Koo Hwang ◽  
Sun Shin Yi ◽  
Jae Hoon Shin ◽  
Ki-Yeon Yoo ◽  
Jung Hoon Choi ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 909
Author(s):  
Allison M. Bond ◽  
Daniel A. Berg ◽  
Stephanie Lee ◽  
Alan S. Garcia-Epelboim ◽  
Vijay S. Adusumilli ◽  
...  

Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development. In contrast, we find that neurogenesis in the dentate gyrus begins embryonically but is a protracted process which peaks neonatally and continues at low levels postnatally. As a result, astrogenesis, which occurs during early postnatal development, overlaps with the process of neurogenesis in the dentate gyrus. During all stages, neurogenesis overwhelms astrogenesis in the dentate gyrus. In addition, we find that the timing of peak astrogenesis varies by hippocampal subregion. Together, our results show differential timing and coordination of neurogenesis and astrogenesis in developing mouse hippocampal subregions and suggest that neurogenesis and gliogenesis occur simultaneously during dentate gyrus development, challenging the conventional principle that neurogenesis and gliogenesis are temporally separated processes.


1982 ◽  
Vol 5 (4) ◽  
pp. 345-358 ◽  
Author(s):  
G. Guéneau ◽  
A. Privat ◽  
J. Drouet ◽  
L. Court

Sign in / Sign up

Export Citation Format

Share Document