Peripheral T-cell lymphoma gene expression profiles

2006 ◽  
Vol 24 (3) ◽  
pp. 113-119 ◽  
Author(s):  
B. Martinez-Delgado
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 969-969
Author(s):  
Magdalena Barbara Wozniak ◽  
Maria Socorro Rodriguez-Pinilla ◽  
Esperanza Martin ◽  
Francisco Javier Alves ◽  
Manuela Mollejo ◽  
...  

Abstract Abstract 969 Introduction: Peripheral T-cell lymphoma (PTCL) has been the subject of a relatively limited number of studies to elucidate the molecular pathogenesis. As a result, molecular classification of PTCL is still to be developed, targeted drugs are in very early development and clinical outcome is dismal. Recently, new technologies in genomic analysis have offered the opportunity to improve the knowledge regarding microRNA and gene expression signatures in T-cell lymphoma as well as the potential of microRNAs as prognostic markers in this disease. Patients and methods: The study included a group of 22 patients with PTCL along with 7 reactive lymph nodes (LN) as controls. The global microRNA and gene expression profiles were examined using a commercially available Agilent platform. To identify microRNAs differentially expressed in PTCL versus LN samples and between different subgroups of PTCL, we used the significance analysis of microarrays (SAM) protocol and permutation tests (10,000 permutations). For analysis of pathways associated with PTCL pathogenesis, a gene set enrichment analysis (GSEA) was performed. Results were validated in an additional set of paraffin embedded samples. Results: A signature composed of 80 microRNAs was found to be differentially expressed in PTCL compared with LN, including the let-7 family, mir-10, mir-15, mir-16 and miR-101 (p<0.0001). Gene expression profiling (GEP) revealed twelve pathways significantly enriched in malignant tissue (FDR<0.1), including the ERK, EGF, CDK5, MET and cytokine induced signaling cascades. GEP data were analyzed trying to correlate the lymphoma cases with the signatures of different T-cell subpopulations including TH1, TH2, T-reg, TH17, TFH and cytotoxic T-cells. The analysis of lymphoma samples revealed a group of 5 cases with a null phenotype lacking any resemblance to normal T-cell subpopulations. These patients were CD4, CD8 double negative and had poorer prognosis than patients with tumors expressing T-cell differentiation markers. We compared microRNA and gene expression profiles of the cases with null-phenotype vs. differentiated-phenotype and found that the former group expressed oncogenic microRNAs, such as the miR-17-92 cluster (Oncomir-1) and miR-181 family. In addition, a set of 27 microRNAs was lost in the null-phenotype group (FDR<0.0001). These included miR-223, miR-100, let-7b, let-7c, miR-145, miR-195 and miR-497 which target genes of the insulin like growth factor 1 (IGF-1) pathway and oncogenic Ras family, signaling cascades that have been shown to function as potent proliferation stimuli. Consistently with the results as outlined above, GSEA analysis demonstrated RACCYCD (Ras and Rho), IGF1, Wnt and cell cycle regulation pathway enrichment in the null-phenotype group. In contrast, NK/T, T-cytotoxic, inflammatory cytokine, NF-κB and T-cell receptor (TCR) pathways were significantly upregulated in the differentiated group (FDR<0.1). Conclusions: Molecular analysis of PTCL, facilitated by the comparison with normal T-cell subpopulations, revealed the existence of a null-phenotype PTCL, characterized by aggressive behavior and expressing a microRNA oncogenic signature. This research suggests possible and novel roles for microRNAs in the diagnosis and pathogenesis of T-cell lymphoma. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 12 ◽  
pp. 175883592092382 ◽  
Author(s):  
Yuanyuan Sun ◽  
Ling Li ◽  
Xin Li ◽  
Lei Zhang ◽  
Xinhua Wang ◽  
...  

Aim: To compare the outcomes of GDPT [gemcitabine (G), cisplatin (D), prednisone (P), thalidomide (T)] versus CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) in treating newly diagnosed PTCL (peripheral T-cell lymphoma). Methods: An open-label prospective clinical trial with 153 newly diagnosed PTCL patients conducted between January 2010 and December 2018 was designed. Patients were randomly assigned to the GDPT (77 cases) and CHOP (76 cases) groups. Patients in each group were further divided into four subgroups: PTCL, not otherwise specified (PTCL-NOS); anaplastic large cell lymphoma (ALCL), angioimmunoblastic T cell lymphoma (AITL), and other types subgroup, in accordance with pathological patterns. Based on expression of RRM1, TOP2A, TUBB3, and ERCC1, patients were divided into groups with high and low gene expression levels. Clinical characteristics, side effects, efficacy, progression-free survival (PFS), and overall survival (OS) were compared. Results: There were no significant differences in the basic clinical features or side effects between the GDPT and CHOP groups. The overall response rate (ORR) of the GDPT group was better than that of the CHOP group (66.3% versus 50.0%, p = 0.042), as was the complete remission (CR) rate (42.9% versus 27.6%, p = 0.049). Patients in the GDPT group had a longer PFS and OS than the CHOP group. The 4-year PFS and OS rates in the GDPT group were both superior to those in the CHOP group (63.6% versus 53.0% for PFS, p = 0.035; 66.8% versus 53.6% for OS, p = 0.039). In the GDPT group, the difference in CR between the four subgroups was statistically significant ( p = 0.046). In the CHOP group, differences in both CR and ORR among the four subgroups were statistically significant ( p < 0.001 and p = 0.005, respectively). There were also statistically significant differences in CR between patients treated with CHOP and GDPT in the PTCL-NOS subgroup, AITL subgroup, and the other types subgroup ( p = 0.015; p = 0.003; p = 0.005, respectively). The data also showed a significant difference in OS among the four subgroups within the GDPT group ( p = 0.001). The OS of AITL was shorter than that of the other three subgroups. Four subgroups of CHOP showed a significant difference in PFS ( p = 0.019). There was no statistical association between responses and the gene expression levels of RRM1, ERCC1, TUBB3, and TOP2A. Conclusion: The GDPT group had better response rates and prolonged patient PFS and OS. As a promising new regimen, GDPT is expected to become the first-line therapy for PTCL. New agents should be applied to patients who do not achieve good responses with previous treatment, such as those diagnosed with angioimmunoblastic T cell lymphoma. Trial registration: This open randomized prospective clinical trial was registered at ClinicalTrials.gov (NCT01664975).


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 4952-4963 ◽  
Author(s):  
Laurence de Leval ◽  
David S. Rickman ◽  
Caroline Thielen ◽  
Aurélien de Reynies ◽  
Yen-Lin Huang ◽  
...  

Abstract The molecular alterations underlying the pathogenesis of angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma, unspecified (PTCL-u) are largely unknown. In order to characterize the ontogeny and molecular differences between both entities, a series of AITLs (n = 18) and PTCLs-u (n = 16) was analyzed using gene expression profiling. Unsupervised clustering correlated with the pathological classification and with CD30 expression in PTCL-u. The molecular profile of AITLs was characterized by a strong microenvironment imprint (overexpression of B-cell– and follicular dendritic cell–related genes, chemokines, and genes related to extracellular matrix and vascular biology), and overexpression of several genes characteristic of normal follicular helper T (TFH) cells (CXCL13, BCL6, PDCD1, CD40L, NFATC1). By gene set enrichment analysis, the AITL molecular signature was significantly enriched in published TFH-specific genes. The enrichment was higher for sorted AITL cells than for tissue samples. Overexpression of several TFH genes was validated by immunohistochemistry in AITLs. A few cases with molecular TFH-like features were identified among CD30− PTCLs-u. Our findings strongly support that TFH cells represent the normal counterpart of AITL, and suggest that the AITL spectrum may be wider than suspected, as a subset of CD30− PTCLs-u may derive from or be related to AITL.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8018-8018
Author(s):  
Ling Li ◽  
Yuanyuan Sun ◽  
Xin Li ◽  
Lei Zhang ◽  
Xinhua Wang ◽  
...  

8018 Background: Peripheral T-cell lymphoma(PTCL) is highly heterogeneous invasive NHL.There is no consensus standard treatment for it now. So outcomes of GDPT versus CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) in treating newly diagnosed PTCL were compared. Methods: An open-label prospective clinical trial with 153 newly diagnosed PTCL patients conducted between January 2010 and December 2018 was designed. Patients were randomly assigned to the GDPT group (77 cases) and CHOP group (76 cases). Patients in each group were further divided into four subgroups: PTCL-NOS, ALCL, AITL, and an other types, in accordance with pathological patterns. Based on expression of RRM1, TOP2A, TUBB3 and ERCC1, patients were divided into groups with high and low gene expression levels. Clinical characteristics, side effects, efficacy, PFS and OS were compared. Results: There were no significant differences in the basic clinical features or side effects between the GDPT and CHOP groups. The ORR of the GDPT group was better than that of the CHOP group (66.3%vs. 50.0%, P= 0.042), as was the CR rate (42.9% vs. 27.6%, P= 0.049). Patients in the GDPT group had a longer PFS and OS than the CHOP group. The 4-year PFS and OS rates in the GDPT group were both superior to those in the CHOP group (63.6% vs. 53.0% for PFS, P= 0.035; 66.8% vs. 53.6% for OS, P= 0.039).In the GDPT group, the difference in CR between the four subgroups was statistically significant (P = 0.046).In the CHOP group, differences in both CR and ORR among the four subgroups were statistically significant ( P= < 0.001 and P= 0.005, respectively).There were also statistically significant differences in CR between patients treated with CHOP and GDPT in the PTCL-NOS subgroup, AITL subgroup, and the other types subgroup( P= 0.015; P= 0.003; P= 0.005, respectively).The data also showed a significant difference in OS among the four subgroups within the GDPT group ( P= 0.001).The OS of AITL was shorter than that of the other three subgroups. Four subgroups of CHOP showed a significant difference in PFS ( P= 0.019). There was no statistical association between responses and the gene expression levels of RRM1, ERCC1, TUBB3 and TOP2A. Conclusions: The GDPT group had better response rates and prolonged the patients’ PFS and OS. As a promising new regimen, GDPT is expected to become the first-line therapy for PTCL. New agents should be applied to patients who do not achieve good responses with previous treatment, such as those diagnosed with angioimmunoblastic T cell lymphoma. Clinical trial information: NCT01664975 .


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-39
Author(s):  
Tyler A. Herek ◽  
Alyssa Bouska ◽  
Waseem G. Lone ◽  
Tayla B. Heavican ◽  
Catalina Amador ◽  
...  

Background Mutational profiling of angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) has revealed recurrent mutations in DNMT3A, a de novo methyltransferase. DNMT3A catalyzes the conversion of cytosine to 5-methylcytosine (5-mC) while interacting with histones and transcription factors to influence gene expression. While the DNMT3A mutational profile in PTCL entities indicates loss-of-function, hotspot change-of-function mutations (e.g., DNMT3AR882H/C) have been observed with their frequency differing between PTCL entities. Despite the high occurrence of DNMT3A mutations in PTCLs (~30% of cases), their functional consequences have not been extensively studied. Herein, we examined DNMT3A mutations in AITL and the novel molecular subgroups of PTCL-NOS (i.e., PTCL-TBX21 and PTCL-GATA3) and observed distinct biological and prognostic significance associated with DNMT3A mutations in the PTCL-TBX21 subgroup. Methods PTCL-NOS cases (n = 141) were utilized following PTCL-TFH exclusion. Using previously described molecular classification methods, cases were classified as PTCL-TBX21 (n = 80) or PTCL-GATA3 (n = 61). A separate cohort of AITL cases (n = 176) were included for comparative purposes. Clinical outcome data were assessed with the Kaplan-Meier method. Mutation data were generated from DNA-sequencing (n = 224) or RNA-sequencing methods (n = 46). Gene expression comparisons were conducted using BRB-ArrayTools. Immune-cell signatures were generated from the CIBERSORT and/or xCell computational tools. 5-mC DNA immunoprecipitation sequencing (MeDIP-Seq) was performed on available PTCL-TBX21 cases (n = 7) or healthy tonsil controls (n = 2). Four of these cases carried DNMT3A mutations (n = 3 DNMT3AR882, n = 1 DNMT3AQ886) while the remaining cases (n = 3) were wild type for DNMT3A. In vitro analyses of ectopic expression of the DNMT3AR882H mutant or DNMT3A knockdown were conducted using healthy-donor CD3+ T-cells or the CD8+ T8ML1 PTCL cell line. Following corrections for false discoveries, p-values &lt; 0.05 were considered significant. Results DNMT3A-mutated PTCL-TBX21 cases had an inferior overall survival, with DNMT3A mutated residues skewed toward the methyltransferase domain. In contrast to the DNMT3A mutation profile seen in AITL, PTCL-TBX21 featured DNMT3AR882H/C mutations at a frequency (30%) similar to other hematological malignancies. Gene expression profiling revealed that DNMT3A-mutant PTCL-TBX21 cases were enriched for activated CD8+ T-cell gene signatures and showed association with the previously described TH1/αβ cytotoxic T-cell lymphoma subgroup. Following MeDIP-Seq, assessment of differentially methylated regions comparing DNMT3AR882/Q886 PTCL-TBX21 cases to wild type found hypomethylation in pathways associated with T-cell activation, TCR signaling, and TH1 responses. In vitro analyses demonstrated that ectopic expression of the DNMT3AR882H mutant or DNMT3A knockdown lead to enhanced proliferation and NF-κB signaling in T8ML1 cells in comparison to control vectors. In primary CD3+ T-cell cultures, ectopic expression of the DNMT3AR882H mutant protein resulted in the preferential outgrowth of CD8+ T-cells. Conclusions Taken together, our findings establish mutations in DNMT3A as a novel prognostic marker in PTCL-TBX21. The integrated expression, methylation, and in vitro findings suggest that disruption of DNMT3A leads toward an activated and cytotoxic phenotype and could potentially drive oncogenic TCR signaling. Clinically, as these cases were associated with the TH1/αβ cytotoxic T-cell lymphoma subgrouping, these findings should be taken into consideration for future treatment strategies regarding PTCL-NOS patients as current standard-of-care treatments may be particularly inadequate in the treatment of PTCLs with cytotoxic phenotype. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (19) ◽  
pp. 3997-4005 ◽  
Author(s):  
Wilfried Valleron ◽  
Loic Ysebaert ◽  
Laure Berquet ◽  
Virginie Fataccioli ◽  
Cathy Quelen ◽  
...  

Abstract Peripheral T-cell lymphoma (PTCL) is a rare, heterogeneous type of non-Hodgkin lymphoma (NHL) that, in general, is associated with a poor clinical outcome. Therefore, a current major challenge is the discovery of new prognostic tools for this disease. In the present study, a cohort of 122 patients with PTCL was collected from a multicentric T-cell lymphoma consortium (TENOMIC). We analyzed the expression of 80 small nucleolar RNAs (snoRNAs) using high-throughput quantitative PCR. We demonstrate that snoRNA expression analysis may be useful in both the diagnosis of some subtypes of PTCL and the prognostication of both PTCL-not otherwise specified (PTCL-NOS; n = 26) and angio-immunoblastic T-cell lymphoma (AITL; n = 46) patients treated with chemotherapy. Like miRNAs, snoRNAs are globally down-regulated in tumor cells compared with their normal counterparts. In the present study, the snoRNA signature was robust enough to differentiate anaplastic large cell lymphoma (n = 32) from other PTCLs. For PTCL-NOS and AITL, we obtained 2 distinct prognostic signatures with a reduced set of 3 genes. Of particular interest was the prognostic value of HBII-239 snoRNA, which was significantly over-expressed in cases of AITL and PTCL-NOS that had favorable outcomes. Our results suggest that snoRNA expression profiles may have a diagnostic and prognostic significance for PTCL, offering new tools for patient care and follow-up.


Oncotarget ◽  
2019 ◽  
Vol 10 (50) ◽  
pp. 5136-5151
Author(s):  
Luís Alberto de Pádua Covas Lage ◽  
Débora Levy ◽  
Flávia Dias Xavier ◽  
Diego Cândido Reis ◽  
Renata de Oliveira Costa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document