Analysis of multilayer convective flow of a hybrid nanofluid in porous medium sandwiched between the layers of nanofluid

Heat Transfer ◽  
2021 ◽  
Author(s):  
S. Manjunatha ◽  
V. Puneeth ◽  
Rajeev Anandika ◽  
B. J. Gireesha
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


2016 ◽  
Vol 9 ◽  
pp. 47-65 ◽  
Author(s):  
Kolawole Sunday Adegbie ◽  
Adeyemi Isaiah Fagbade

The present paper addresses the problem of MHD forced convective flow in a fluid saturated porous medium with Brinkman-Forchheimer model, which is an important physical phenomena in engineering applications. The paper extends the previous models to account for effects of variable fluid properties on the forced convective flow through a porous medium in the presence of radiative heat loss using bivariate spectral relaxation method (BSRM). The dynamic viscosity and thermal conductivity of the newtonian fluid are assumed to vary linearly respectively, with temperature whereas the contribution of thermal radiative heat loss is based on Rosseland diffussion approximation. The flow model is described and expressed in form of a highly coupled nonlinear system of partial differential equations. The method of solution BSRM as proposed by Motsa [25] seeks to decouple the original system of PDEs to form a sequence of equations that can be solved in a computationally efficient manner. BSRM is an approach that applies spectral collocation independently in all underlying independent variable is executed to obtain approximate solutions of the problem. The proposed algorithm is supposed to be a very accurate, convergent and very effective in generating numerical results. The results obtained show a significant effects of the flow control parameters on the fluid velocity and temperature respectively. Consequently, the wall shear stress and local heat transfer rate of the present paper are compared with the available results in literatures. Remarkable impacts and a good agreement are found.


Sign in / Sign up

Export Citation Format

Share Document