Dissolved inorganic carbon isotopes of a typical alpine river on the Tibetan Plateau revealing carbon sources, wetland effect and river recharge

2021 ◽  
Author(s):  
Lu Ge ◽  
Hongbin Tan ◽  
Xi Chen ◽  
Wenbo Rao ◽  
Meitong Fan
2016 ◽  
Author(s):  
Martin E. Nowak ◽  
Valérie F. Schwab ◽  
Cassandre S. Lazar ◽  
Thomas Behrendt ◽  
Bernd Kohlhepp ◽  
...  

Abstract. Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e. carbonate equilibria) and biotic factors influence δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the geochemical modelling program NETPATH, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate dramatically different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes of 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings demonstrate the large variation in the importance of biotic as well as abiotic controls on 13C and 14C of DIC in closely related aquifer assemblages. Further, they support the importance of subsurface derived carbon sources like DIC for chemolithoautotrophic microorganisms as well as rock-derived organic matter for supporting heterotrophic groundwater microbial communities and indicate that even shallow aquifers have microbial communities that use a variety of subsurface derived carbon sources.


2020 ◽  
pp. SP507-2020-49 ◽  
Author(s):  
Andreja Sironić ◽  
Ines Krajcar Bronić ◽  
Nada Horvatinčić ◽  
Jadranka Barešić ◽  
Damir Borković ◽  
...  

2017 ◽  
Vol 21 (9) ◽  
pp. 4283-4300 ◽  
Author(s):  
Martin E. Nowak ◽  
Valérie F. Schwab ◽  
Cassandre S. Lazar ◽  
Thomas Behrendt ◽  
Bernd Kohlhepp ◽  
...  

Abstract. Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria) and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings demonstrate the large variation in the importance of biotic as well as abiotic controls on 13C and 14C of DIC in closely related aquifer assemblages. Further, they support the importance of subsurface-derived carbon sources like DIC for chemolithoautotrophic microorganisms as well as rock-derived organic matter for supporting heterotrophic groundwater microbial communities and indicate that even shallow aquifers have microbial communities that use a variety of subsurface-derived carbon sources.


Author(s):  
Linyan Yue ◽  
Weidong Kong ◽  
Chunge Li ◽  
Guibing Zhu ◽  
Liping Zhu ◽  
...  

Abstract Climate change globally accelerates the shrinkage of inland lakes, resulting in increases in both water salinity and dissolved inorganic carbon (DIC). The increases of salinity and DIC generate contrasting effects on microbial primary producers and primary production, however, their combined effects remain unclear in aquatic ecosystems. We hypothesized that increased DIC mitigates the constraints of enhanced salinity on microbial primary producers and primary production. To test this, we employed isotope labeling and molecular methods to explore primary production and four dominant types of microbial primary producers (form IA, IB, IC and ID) in lakes on the Tibetan Plateau. Results exhibited that DIC positively correlated with abundance of microbial primary producers and primary production (all P < 0.001) and offset salinity constraints. Structural equation models elucidated that DIC substantially enhanced primary production by stimulating the abundance of form ID microbial primary producers. The abundance of form ID primary producers explained more variations (14.6%) of primary production than form IAB (6%) and physicochemical factors (6.8%). Diatoms (form ID) played a determinant role in primary production in the lakes, by adapting to high DIC and high salinity. Our findings suggest that inland lakes may support higher primary productivity in future climate change scenarios.


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 636-645 ◽  
Author(s):  
Ramon Aravena ◽  
S. L. Schiff ◽  
S. E. Trumbore ◽  
P. J. Dillon ◽  
Richard Elgood

Dissolved inorganic carbon (DIC) is the main acid buffer in forested lake watersheds in Canada. We used carbon isotopes (13C, 14C) to evaluate the production and cycling of DIC in an acid-sensitive lake watershed of the Precambrian Shield. Soil CO2, groundwater and stream DIC were characterized chemically and isotopically. Soil CO2 concentration profiles reflect both changes in production and in losses due to diffusion. δ13C soil CO2 profiles (δ13C values of −23‰ in summer, slightly enriched during the fall and −25%‰ during the winter) are a reflection of the isotopic composition of the sources and changes in isotopic fractionation due to diffusion. Carbon isotopic composition (13C, 14C) of the groundwater and stream DIC clearly indicate that weathering of silicates by soil CO2 is the main source of DIC in these watersheds. 14C data show that, in addition to recent groundwater, an older groundwater component with depleted 14C activity is also present in the bedrock. The carbon isotope pattern in the groundwater also implies that, besides the main springtime recharge events, contributions to the groundwater may also occur during late winter/early spring.


Radiocarbon ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Yuan Li ◽  
Mingrui Qiang ◽  
Yanxiang Jin ◽  
Li Liu ◽  
Aifeng Zhou ◽  
...  

AbstractTerrestrial plant remains in the sediments of lakes from semi-arid and arid regions are rare and therefore the establishment of a sediment chronology depends on accurate assessment of the reservoir effect of the lake water. In a study of Genggahai Lake in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau, we used accelerator mass spectrometry radiocarbon (AMS 14C) dating to determine the age of (1) dissolved inorganic carbon in the water (DICLW), (2) macrophyte remains in the uppermost samples of core sediments, (3) living P. pectinatus in the lake, and (4) dissolved inorganic carbon of spring water in the catchment. The results show that the ages of the DICLW (910 14C yr BP on average) were much younger than the ages of the groundwater (6330 14C yr BP on average), which may result mainly from CO2 exchange between the lake water and the atmosphere. In addition, the 14C ages of DICLW and macrophyte remains in the uppermost core sediments varied from site to site within the lake, which we ascribe to the different photosynthesis rates of Chara spp. and vascular plants. The higher photosynthesis rate of Chara spp. decreases lake-water pCO2, which leads to more atmospheric CO2 being absorbed by the lake water, and thereby greatly reducing the age of carbon species in areas dominated by Chara spp. Although Genggahai Lake is well mixed, the differences between the apparent ages of the lake water are significantly modulated by the photosynthesis intensity of submerged plants.


1997 ◽  
Vol 200 (20) ◽  
pp. 2653-2662
Author(s):  
J M Lucas ◽  
L W Knapp

The union of calcium cations with carbonate anions to form calcium carbonate (CaCO3) is a fundamentally important physiological process of many marine invertebrates, in particular the corals. In an effort to understand the sources and processes of carbon uptake and subsequent deposition as calcium carbonate, a series of studies of the incorporation of 14C-labeled compounds into spicules was undertaken using the soft coral Leptogorgia virgulata. It has been surmised for some time that dissolved inorganic carbon in sea water is used in the biomineralization process. Furthermore, it was suspected that metabolically generated CO2 is also available for calcification. As a means of testing these possible sources of carbon in spicule calcification, key enzymes or transport systems in each pathway were inhibited. First, the enzyme carbonic anhydrase was specifically inhibited using acetazolamide. Second, the active transport of bicarbonate was inhibited using DIDS (4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid). Third, CO2 generation resulting from glycolysis and the citric acid cycle was arrested using iodoacetic acid, which interferes specifically with the enzyme glyceraldehyde-3-phosphate dehydrogenase. The results indicate that dissolved CO2 is the largest source of carbon used in the formation of calcitic sclerites, followed by HCO3- from dissolved inorganic carbon. In L. virgulata, the dissolved inorganic carbon is responsible for approximately 67% of the carbon in the sclerites. The other 33% comes from CO2 generated by glycolysis. Two important conclusions can be drawn from this work. First, carbon for spiculogenesis comes not only from dissolved inorganic carbon in the environment but also from metabolically produced carbon dioxide. While the latter has been theorized, it has never before been demonstrated in octocorals. Second, regardless of the carbon source, the enzyme carbonic anhydrase plays a pivotal role in the physiology of spicule formation in Leptogorgia virgulata.


2020 ◽  
Vol 201 ◽  
pp. 104495
Author(s):  
Weining Liu ◽  
Zijun Wu ◽  
Sinan Xu ◽  
Jiangong Wei ◽  
Xiaotong Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document