Optimal layout of surfaces, MODFL, on record forms

1976 ◽  
Vol 40 (2) ◽  
pp. 107-108
Author(s):  
EP Plow
Keyword(s):  
2016 ◽  
Vol 167 (5) ◽  
pp. 294-301
Author(s):  
Leo Bont

Optimal layout of a forest road network The road network is the backbone of forest management. When creating or redesigning a forest road network, one important question is how to shape the layout, this means to fix the spatial arrangement and the dimensioning standard of the roads. We consider two kinds of layout problems. First, new forest road network in an area without any such development yet, and second, redesign of existing road network for actual requirements. For each problem situation, we will present a method that allows to detect automatically the optimal road and harvesting layout. The method aims to identify a road network that concurrently minimizes the harvesting cost, the road network cost (construction and maintenance) and the hauling cost over the entire life cycle. Ecological issues can be considered as well. The method will be presented and discussed with the help of two case studies. The main benefit of the application of optimization tools consists in an objective-based planning, which allows to check and compare different scenarios and objectives within a short time. The responses coming from the case study regions were highly positive: practitioners suggest to make those methods a standard practice and to further develop the prototype to a user-friendly expert software.


2020 ◽  
Vol 1693 ◽  
pp. 012002
Author(s):  
Shao-rui Wang ◽  
Kang-nan Wang ◽  
Li Yuan ◽  
Wen-qi Bai ◽  
Zhi-hua Ma

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan-Hom Li ◽  
Yen-Ju Chen

AbstractThis study determines the effect of the configuration of the magnetic field on the movement of gas bubbles that evolve from platinum electrodes. Oxygen and hydrogen bubbles respectively evolve from the surface of the anode and cathode and behave differently in the presence of a magnetic field due to their paramagnetic and diamagnetic characteristics. A magnetic field perpendicular to the surface of the horizontal electrode causes the bubbles to revolve. Oxygen and hydrogen bubbles revolve in opposite directions to create a swirling flow and spread the bubbles between the electrodes, which increases conductivity and the effectiveness of electrolysis. For vertical electrodes under the influence of a parallel magnetic field, a horizontal Lorentz force effectively detaches the bubbles and increases the conductivity and the effectiveness of electrolysis. However, if the layout of the electrodes and magnetic field results in upward or downward Lorentz forces that counter the buoyancy force, a sluggish flow in the duct inhibits the movement of the bubbles and decreases the conductivity and the charging performance. The results in this study determine the optimal layout for an electrode and a magnetic field to increase the conductivity and the effectiveness of water electrolysis, which is applicable to various fields including energy conversion, biotechnology, and magnetohydrodynamic thruster used in seawater.


2013 ◽  
Vol 52 (22) ◽  
pp. 7274-7281 ◽  
Author(s):  
Kyusang Han ◽  
Young Hun Kim ◽  
Namjin Jang ◽  
Hosoo Kim ◽  
Dongil Shin ◽  
...  

Author(s):  
Hans A. Eschenauer ◽  
Christof M. Weber

Abstract The present paper addresses the optimal layout of stiffened fiber composite plates (Fig. 1) considering buckling constraints; these plates are increasingly applied in many fields of engineering (air- and spacecraft technology, automotive industries, boatbuilding etc.). This particular area of structural optimization still requires substantial investigations into its fundamentals. The structural analysis alone for the treatment of this type of problems may increase to such a degree that the complete optimization process requires extremely long computation times due to the processing of a high amount of data, a fact that calls for the development of “intelligent” procedures in order to reduce the computation effort to a tolerable measure and to maintain reduplicability of the whole process. For this purpose, a so-called “constructive design model” is introduced.


Sign in / Sign up

Export Citation Format

Share Document