Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the Pseudomonas syringae outer membrane.

1987 ◽  
Vol 6 (5) ◽  
pp. 1467-1473 ◽  
Author(s):  
D. H. Bamford ◽  
M. Romantschuk ◽  
P. J. Somerharju
2005 ◽  
Vol 79 (8) ◽  
pp. 5017-5026 ◽  
Author(s):  
Rimantas Daugelavičius ◽  
Virginija Cvirkaitė ◽  
Aušra Gaidelytė ◽  
Elena Bakienė ◽  
Rasa Gabrėnaitė-Verkhovskaya ◽  
...  

ABSTRACT Bacteriophages φ6 and φ13 are related enveloped double-stranded RNA viruses that infect gram-negative Pseudomonas syringae cells. φ6 uses a pilus as a receptor, and φ13 attaches to the host lipopolysaccharide. We compared the entry-related events of these two viruses, including receptor binding, envelope fusion, peptidoglycan penetration, and passage through the plasma membrane. The infection-related events are dependent on the multiplicity of infection in the case of φ13 but not with φ6. A temporal increase of host outer membrane permeability to lipophilic ions was observed from 1.5 to 4 min postinfection in both virus infections. This enhanced permeability period coincided with the fast dilution of octadecyl rhodamine B-labeled virus-associated lipid molecules. This result is in agreement with membrane fusion, and the presence of temporal virus-derived membrane patches on the outer membrane. Similar to φ6, φ13 contains a thermosensitive lytic enzyme involved in peptidoglycan penetration. The phage entry also caused a limited depolarization of the plasma membrane. Inhibition of host respiration considerably decreased the efficiency of irreversible virus binding and membrane fusion. An active role of cell energy metabolism in restoring the infection-induced defects in the cell envelope was also observed.


2011 ◽  
Vol 124 (7) ◽  
pp. 1126-1135 ◽  
Author(s):  
F. Anton ◽  
J. M. Fres ◽  
A. Schauss ◽  
B. Pinson ◽  
G. J. K. Praefcke ◽  
...  

2010 ◽  
Vol 286 (7) ◽  
pp. 5484-5493 ◽  
Author(s):  
Thamarai K. Janganan ◽  
Li Zhang ◽  
Vassiliy N. Bavro ◽  
Dijana Matak-Vinkovic ◽  
Nelson P. Barrera ◽  
...  

2015 ◽  
Vol 112 (17) ◽  
pp. 5497-5502 ◽  
Author(s):  
Manoj Rajaure ◽  
Joel Berry ◽  
Rohit Kongari ◽  
Jesse Cahill ◽  
Ry Young

In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.


2020 ◽  
Author(s):  
Andrew Edward Sathoff ◽  
Shawn Lewenza ◽  
Deborah A. Samac

Abstract Background: Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn5-lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that are resistant to in vitro MtDef4 treatments.Results: Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa. A defensin from Medicago truncatula, MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula, MtDef5, failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy. The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments. Conclusions: MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the MtDef4 antibacterial mode of action may also involve inhibition of translation.


1996 ◽  
Vol 14 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Pierre Cornells ◽  
Javier Cote Sierra ◽  
Antonio Lim ◽  
Achut Malur ◽  
Sumalee Tungpradabkul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document