scholarly journals Both cyclin A delta 60 and B delta 97 are stable and arrest cells in M-phase, but only cyclin B delta 97 turns on cyclin destruction.

1991 ◽  
Vol 10 (13) ◽  
pp. 4311-4320 ◽  
Author(s):  
F.C. Luca ◽  
E.K. Shibuya ◽  
C.E. Dohrmann ◽  
J.V. Ruderman
Keyword(s):  
Cyclin A ◽  
Cyclin B ◽  
1998 ◽  
Vol 111 (12) ◽  
pp. 1751-1757 ◽  
Author(s):  
A. Abrieu ◽  
T. Brassac ◽  
S. Galas ◽  
D. Fisher ◽  
J.C. Labbe ◽  
...  

We have investigated whether Plx1, a kinase recently shown to phosphorylate cdc25c in vitro, is required for activation of cdc25c at the G2/M-phase transition of the cell cycle in Xenopus. Using immunodepletion or the mere addition of an antibody against the C terminus of Plx1, which suppressed its activation (not its activity) at G2/M, we show that Plx1 activity is required for activation of cyclin B-cdc2 kinase in both interphase egg extracts receiving recombinant cyclin B, and cycling extracts that spontaneously oscillate between interphase and mitosis. Furthermore, a positive feedback loop allows cyclin B-cdc2 kinase to activate Plx1 at the G2/M-phase transition. In contrast, activation of cyclin A-cdc2 kinase does not require Plx1 activity, and cyclin A-cdc2 kinase fails to activate Plx1 and its consequence, cdc25c activation in cycling extracts.


2019 ◽  
Vol 218 (11) ◽  
pp. 3597-3611 ◽  
Author(s):  
Daisaku Hiraoka ◽  
Enako Hosoda ◽  
Kazuyoshi Chiba ◽  
Takeo Kishimoto

The kinase cyclin B–Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B–Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A–Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B–Cdk1 activation, cyclin A–Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B–Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.


1992 ◽  
Vol 116 (3) ◽  
pp. 707-724 ◽  
Author(s):  
T Hunt ◽  
F C Luca ◽  
J V Ruderman

Fertilization of clam oocytes initiates a series of cell divisions, of which the first three--meiosis I, meiosis II, and the first mitotic division--are highly synchronous. After fertilization, protein synthesis is required for the successful completion of every division except meiosis I. When protein synthesis is inhibited, entry into meiosis I and the maintenance of M phase for the normal duration of meiosis occur normally, but the chromosomes fail to interact correctly with the spindle in meiosis II metaphase. By contrast, inhibition of protein synthesis immediately after completion of meiosis or mitosis stops cells entering the next mitosis. We describe the behavior of cyclins A and B in relation to these "points of no return." The cyclins are synthesized continuously and are rapidly destroyed shortly before the metaphase-anaphase transition of the mitotic cell cycles, with cyclin A being degraded in advance of cyclin B. Cyclin destruction normally occurs during a 5-min window in mitosis, but in the monopolar mitosis that occurs after parthenogenetic activation of clam oocytes, or when colchicine is added to fertilized eggs about to enter first mitosis, the destruction of cyclin B is strongly delayed, whereas proteolysis of cyclin A is maintained in an activated state for the duration of metaphase arrest. Under either of these abnormal conditions, inhibition of protein synthesis causes a premature return to interphase that correlates with the time when cyclin B disappears.


2021 ◽  
Vol 65 (7-8-9) ◽  
pp. 487-496
Author(s):  
Mohammed El Dika ◽  
Lisa Wechselberger ◽  
Bilal Djeghout ◽  
Djamel Eddine Benouareth ◽  
Mohammed El Dika ◽  
...  

The timing of the M-phase is precisely controlled by a CDC6-dependent mechanism inhibiting the mitotic histone H1 kinase. Here, we describe the differential regulation of the dynamics of this mitotic kinase activity by exogenous cyclin A or cyclin B in the Xenopus laevis cycling extracts. We show that the experimental increase in cyclin A modifies only the level of histone H1 kinase activity, while the cyclin B increase modifies two parameters: histone H1 kinase activity and the timing of its full activation, which is accelerated. On the other hand, the cyclin A depletion significantly delays full activation of histone H1 kinase. However, when CDC6 is added to such an extract, it inhibits cyclin B-associated histone H1 kinase, but does not modify the mitotic timing in the absence of cyclin A. Further, we show via p9 co-precipitation with Cyclin-Dependent Kinases (CDKs), that both CDC6 and the bona fide CDK1 inhibitor Xic1 associate with the mitotic CDKs. Finally, we show that the Xic1 temporarily separates from the mitotic CDKs complexes during the peak of histone H1 kinase activity. These data show the differential coordination of the M-phase progression by cyclin A- and cyclin B-dependent CDKs, confirm the critical role of the CDC6-dependent histone H1 kinase inhibition in this process, and show that CDC6 acts differentially through the cyclin B- and cyclin A-associated CDKs. This CDC6- and cyclins-dependent mechanism likely depends on the precisely regulated association of Xic1 with the mitotic CDKs complexes. We postulate that: i. the dissociation of Xic1 from the CDKs complexes allows the maximal activation of CDK1 during the M-phase, ii. the switch between cyclin A- and cyclin B-CDK inhibition upon M-phase initiation may be responsible for the diauxic growth of mitotic histone H1 kinase activity.


2020 ◽  
Vol 15 (1) ◽  
pp. 951-958
Author(s):  
Jiangtao Song ◽  
Wenrong Song ◽  
Lei Zhang

AbstractA lncRNA RP1-85F18.6 was reported to affect cell growth by regulating the cell cycle. Here we tested whether it affects the proliferation of osteoblast cells by regulating the cell cycle. We determined the expression of RP1-85F18.6 in two osteoblast cell lines hFOB and HOB by qPCR. Then we knocked down or overexpressed RP1-85F18.6 in hFOB and tested the alteration of viability, cell cycle, and cell cycle regulatory proteins. Results showed that both hFOB and HOB expressed RP1-85F18.6. The knockdown of RP1-85F18.6 decreased the viability of hFOB, while the overexpression of it increased the viability. Higher expression of RP1-85F18.6 results in higher cell viability. The knockdown of RP1-85F18.6 caused an increase in the S phase cells and a decrease in the G2/M phase cells. The overexpression of RP1-85F18.6 caused a decrease in the S phase cells and an increase in the G2/M phase cells. The knockdown of RP1-85F18.6 decreased cyclin A, cdk1, E2F, cyclin B, p53, and p21, whereas the overexpression of RP1-85F18.6 increased cyclin A, cdk1, E2F, cyclin B, p53, and p21. This study demonstrated that RP1-85F18.6 is expressed in osteoblast cell lines hFOB and HOB. RP1-85F18.6 affects the proliferation of osteoblasts by regulating the cell cycle.


2020 ◽  
Author(s):  
Mohammed El Dika ◽  
Lisa Wechselberger ◽  
Bilal Djeghout ◽  
Djamel Eddine Benouareth ◽  
Krystyna Jęderka ◽  
...  

AbstractThe timing of the M-phase entry and its progression are precisely controlled by a CDC6-dependent mechanism that inhibits the major mitotic kinase CDK1, and, thus, regulates the dynamic of CDK1 during the M-phase. In this paper, we describe the differential regulation of the mitotic CDK1 dynamics by exogenous cyclin A or a non-degradable cyclin B added to the Xenopus laevis embryo cycling extracts. We showed that the variations in the level of cyclin B modify both CDK1 activity and the timing of the M-phase progression, while the cyclin A levels modify only CDK1 activity without changing the timing of the M-phase events. In consequence, CDC6 regulates the M-phase through endogenous cyclin B, but not cyclin A, which we demonstrated directly by the depletion of cyclin A, and the addition of CDC6 to the cycling extracts. Further, we showed, by p9 precipitation (p9 protein associates with Cyclin-Dependent Kinases, CDK), followed by the Western blotting that CDC6, and the bona fide CDK1 inhibitor Xic1, associate with CDK1 and/or another CDK present in Xenopus embryos, the CDK2. Finally, we demonstrated that the Xic1 temoprarily separates from the mitotic CDK complexes during the peak of CDK1 activity. These data show the differential coordination of the M-phase progression by CDK1/cyclin A and CDK1/cyclin B, confirm the critical role of the CDC6-dependent CDK1 inhibition in this process and show that CDC6 acts through the cyclin B- and not cyclin A/CDK complexes. This CDC6- and cyclin B-dependent mechanism may also depend on the precisely regulated association of Xic1 with the CDK complexes. We postulate that the dissociation of Xic1 from the CDK complexes allows the maximal activation of CDK1 during the M-phase.


2018 ◽  
Author(s):  
Daisaku Hiraoka ◽  
Enako Hosoda ◽  
Kazuyoshi Chiba ◽  
Takeo Kishimoto

The kinase cyclin B-Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B-Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1, and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A-Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B-Cdk1 activation, cyclin A-Cdk1 is non-essential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation in starfish oocytes. After hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.


2007 ◽  
Vol 18 (5) ◽  
pp. 1861-1873 ◽  
Author(s):  
Tsz Kan Fung ◽  
Hoi Tang Ma ◽  
Randy Y.C. Poon

The role of cyclin B-CDC2 as M phase-promoting factor (MPF) is well established, but the precise functions of cyclin A remain a crucial outstanding issue. Here we show that down-regulation of cyclin A induces a G2 phase arrest through a checkpoint-independent inactivation of cyclin B-CDC2 by inhibitory phosphorylation. The phenotype is rescued by expressing cyclin A resistant to the RNA interference. In contrast, down-regulation of cyclin B disrupts mitosis without inactivating cyclin A-CDK, indicating that cyclin A-CDK acts upstream of cyclin B-CDC2. Even when ectopically expressed, cyclin A cannot replace cyclin B in driving mitosis, indicating the specific role of cyclin B as a component of MPF. Deregulation of WEE1, but not the PLK1-CDC25 axis, can override the arrest caused by cyclin A knockdown, suggesting that cyclin A-CDK may tip the balance of the cyclin B-CDC2 bistable system by initiating the inactivation of WEE1. These observations show that cyclin A cannot form MPF independent of cyclin B and underscore a critical role of cyclin A as a trigger for MPF activation.


2016 ◽  
Vol 27 (13) ◽  
pp. 2051-2063 ◽  
Author(s):  
Ramya Varadarajan ◽  
Joseph Ayeni ◽  
Zhigang Jin ◽  
Ellen Homola ◽  
Shelagh D. Campbell

Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing.


Sign in / Sign up

Export Citation Format

Share Document