Water Treatment Plant Sludges-An Update of the State of the Art: Part 1

1978 ◽  
Vol 70 (9) ◽  
pp. 498-503 ◽  
2015 ◽  
Vol 71 (11) ◽  
pp. 1638-1645 ◽  
Author(s):  
E. M. da Silva ◽  
D. M. Morita ◽  
A. C. M. Lima ◽  
L. Girard Teixeira

The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.


2019 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
V. MANE-DESHMUKH PRASHANT ◽  
B. MORE ASHWINI ◽  
B. P. LADGAOKAR ◽  
S. K. TILEKAR ◽  
◽  
...  

2017 ◽  
Vol 16 (10) ◽  
pp. 2303-2315 ◽  
Author(s):  
Djamel Ghernaout ◽  
Abdelmalek Badis ◽  
Ghania Braikia ◽  
Nadjet Mataam ◽  
Moussa Fekhar ◽  
...  

2008 ◽  
Author(s):  
Angelina Johnston ◽  
Kevin O'Connor ◽  
Todd Criswell

2001 ◽  
Vol 1 (3) ◽  
pp. 91-96 ◽  
Author(s):  
L.J. Hem ◽  
E.A. Vik ◽  
A. Bjørnson-Langen

In 1995 the new Skullerud water treatment plant was put into operation. The new water treatment includes colour removal and corrosion control with an increase of pH, alkalinity and calcium concentration in addition to the old treatment, which included straining and chlorination only. Comparative measurements of internal corrosion were conducted before and after the installation of the new treatment plant. The effect of the new water treatment on the internal corrosion was approximately a 20% reduction in iron corrosion and a 70% reduction in copper corrosion. The heavy metals content in standing water was reduced by approximately 90%. A separate internal corrosion monitoring programme was conducted, studying the effects of other water qualities on the internal corrosion rate. Corrosion coupons were exposed to the different water qualities for nine months. The results showed that the best protection of iron was achieved with water supersaturated with calcium carbonate. Neither a high content of free carbon dioxide or the use of the corrosion inhibitor sodium silicate significantly reduced the iron corrosion rate compared to the present treated water quality. The copper corrosion rate was mainly related to the pH in the water.


Sign in / Sign up

Export Citation Format

Share Document