scholarly journals Linear response functions of two convective parameterization schemes

2013 ◽  
Vol 5 (3) ◽  
pp. 510-541 ◽  
Author(s):  
Michael J. Herman ◽  
Zhiming Kuang
2015 ◽  
Vol 91 (16) ◽  
Author(s):  
H. Ebert ◽  
S. Mankovsky ◽  
K. Chadova ◽  
S. Polesya ◽  
J. Minár ◽  
...  

2001 ◽  
Vol 7 (5) ◽  
pp. 345-351
Author(s):  
Rasa Kazakevičiūtė-Makovska

Membranai, pagamintai iš medžiagos, kurios fizinės savybės aprašomos deformacijos energijos funkcija W tūrio vienetui, deformacijos energijos funkcija Φ membranos vidurinio paviršiaus ploto vienetui gaunama integruojant funkciją W pagal membranos storį. (Nagrinėjama deformacijos energijos funkcija W neturi nustatytų apribojimų ir yra leidžiamos bet kokio dydžio deformacijos.) Funkcijos Φ tiksli išraiška yra išvesta skersai izotropinei medžiagai, kai izotropijos ašis sutampa su membranos nedeformuoto vidurinio paviršiaus normale. Parodoma, kad skersai izotropinei medžiagai gauta dvimatė membranos darbą apibūdinanti funkcija yra izotropinė ir išsamiai ištirta gautų fizinių priklausomybių struktūra. Tokios fizinės priklausomybės yra išvestos keturiems kontinuumo mechanikoje dažnai nagrinėjamų medžiagų tipams.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Dragi Karevski ◽  
Gunter Schütz

We prove that a recently derived correlation equality between conserved charges and their associated conserved currents for quantum systems far from equilibrium [O.A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016)], is valid under more general conditions than assumed so far. Similar correlation identities, which in generalized Gibbs ensembles give rise to a current symmetry somewhat reminiscent of the Onsager relations, turn out to hold also in the absence of translation invariance, for lattice models, and in any space dimension, and to imply a symmetry of the non-equilibrium linear response functions.


2018 ◽  
Vol 76 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Yang Tian ◽  
Zhiming Kuang

Abstract Previous studies have documented that deep convection responds more strongly to above-the-cloud-base temperature perturbations in the lower troposphere than to those in the upper troposphere, a behavior that is important to the dynamics of large-scale moist flows, such as convectively coupled waves. A number of factors may contribute to this differing sensitivity, including differences in buoyancy, vertical velocity, and/or liquid water content in cloud updrafts in the lower versus upper troposphere. Quantifying the contributions from these factors can help to guide the development of convective parameterization schemes. We tackle this issue by tracking Lagrangian particles embedded in cloud-resolving simulations within a linear response framework. The results show that both the differences in updraft buoyancy and vertical velocity play a significant role, with the vertical velocity being the more important, and the effect of liquid water content is only secondary compared to the other two factors. These results indicate that cloud updraft vertical velocities need to be correctly modeled in convective parameterization schemes in order to properly account for the differing convective sensitivities to temperature perturbations at different heights of the free troposphere.


Sign in / Sign up

Export Citation Format

Share Document