Long-term effects of four extraction media on the fluoride release from four polyacid-modified composite resins (compomers) and one resin-modified glass-ionomer cement

2001 ◽  
Vol 58 (6) ◽  
pp. 631-637 ◽  
Author(s):  
B. Behrend ◽  
W. Geurtsen
2018 ◽  
Vol 37 (6) ◽  
pp. 874-879 ◽  
Author(s):  
Marianne LAGARDE ◽  
Philippe FRANCOIS ◽  
Stéphane LE GOFF ◽  
Jean-Pierre ATTAL ◽  
Elisabeth DURSUN

2014 ◽  
Vol 18 (2) ◽  
pp. 60-69 ◽  
Author(s):  
John W. Nicholson

SUMMARYThe fluoride ion has a well-established beneficial role in dentistry in protecting the teeth from assault by caries. It is known to contribute to the dynamic mineralisation process of the natural tooth mineral, and also to become incorporated with the mineral phase, forming a thin layer of fluorapatite. This is more resistant to acid attack than the native hydroxyapatite, hence protects the tooth against further decay. Other recently discovered aspects of the role and uptake of fluoride will also be discussed.One of the widely used dental restoratives, the glass-ionomer dental cement, is able to release fluoride in a sustained manner that may continue for many years, and this is seen as clinically beneficial. The closely related resin-modified glass-ionomer cement, and also the polyacid-modified composite resin (“compomer”) are able to do the same. There are also fluoride-containing conventional composite resins able to release fluoride.These various materials are reviewed and the way in which they release fluoride are described, as well as the effectiveness of the release at the levels involved. Studies of effectiveness of fluoride release from these various classes of material are reviewed, and shown to suggest that release from conventional and resin-modified glass-ionomers is more beneficial than from composite resins. This is attributed to 2 causes: firstly, that it is not possible to replace the lost fluoride in composites, unlike glass-ionomers, and secondly because the other ions released from glass-ionomers (calcium, phosphate) are able to contribute to local remineralisation of the tooth. The absence of these other ions in fluoridated composites means that remineralisation is able to occur to a lesser extent, if at all.


2004 ◽  
Vol 5 (4) ◽  
pp. 42-49 ◽  
Author(s):  
Yusuf Ziya Bayindir ◽  
Mehmet Yildiz

Abstract In this study the top and bottom surface hardness of two polyacid-modified composite resins (PMCRs), one resin-modified glass ionomer cement (RMGIC), and one composite resin were evaluated. The affect of water storage on their hardness was also investigated. The study was conducted using four different groups, each having five specimens obtained from fiberglass die molds with a diameter of 5 mm and a height of 2 mm. Measurements were made on the top and bottom surface of each specimen and recorded after 24 hours and again at 60 days. All tested materials showed different hardness values, and the values of top surfaces of the specimens were found to be higher than the bottom surface in all test groups. There was no statistical difference in the Vickers hardness (HV) values when the test specimens were kept in water storage. In conclusion Hytac displayed microhardness values higher than Vitremer and Dyract. We found the order of HV values to be Surfil > Hytac > Dyract > Vitremer, respectively. Vitremer presented the lowest microhardness level and Surfil the highest. Citation Bayindir YZ, Yildiz M. Surface Hardness Properties of Resin-Modified Glass Ionomer Cements and Polyacid-Modified Composite Resins. J Contemp Dent Pract 2004 November;(5)4:042-049.


1998 ◽  
Vol 2 (3) ◽  
pp. 143-146 ◽  
Author(s):  
W. Geurtsen ◽  
P. Bubeck ◽  
G. Leyhausen ◽  
F. Garcia-Godoy

2003 ◽  
Vol 82 (10) ◽  
pp. 829-832 ◽  
Author(s):  
C.M. Carey ◽  
M. Spencer ◽  
R.J. Gove ◽  
F.C. Eichmiller

Fluoride is added to many dental restorative materials, including glass-ionomer cements, for the specific purpose of leaching fluoride into the surrounding tissues to provide secondary caries inhibition. During the caries process, an acidic environment attacks the dental tissues as well as the glass-ionomer cement. We hypothesized that pH significantly affects the rate of release of fluoride from the glass-ionomer cement. A continuous-flow fluoride-measuring system that monitors the amount of fluoride released over time was used to determine the release of fluoride from a resin-modified glass-ionomer cement (KetacFil®). The results show that the release rate began with a fast burst of fluoride which quickly diminished to low levels in 3 days. Under neutral pH conditions, the rate of fluoride release at 72 hrs was significantly slower than at pH 4.


2011 ◽  
Vol 22 (4) ◽  
pp. 275-279 ◽  
Author(s):  
Marco Aurélio Benini Paschoal ◽  
Carla Vecchione Gurgel ◽  
Daniela Rios ◽  
Ana Carolina Magalhães ◽  
Marília Afonso Rabelo Buzalaf ◽  
...  

The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 494
Author(s):  
Ascensión Vicente ◽  
Francisco Javier Rodríguez-Lozano ◽  
Yolanda Martínez-Beneyto ◽  
María Jaimez ◽  
Julia Guerrero-Gironés ◽  
...  

The aim of this study was to evaluate the bond strength, microleakage, cytotoxicity, cell migration and fluoride ion release over time from a resin-modified glass-ionomer cement (RMGIC) enriched with bioactive glasses (BAGs) and a nanohybrid restorative polymer resin agent used as adhesion material in the cemented brackets. One hundred and twenty bovine lower incisors were divided into three groups: (Transbond Plus Self Etching Primer (TSEP)/Transbond XT (TXT), TSEP/ACTIVA, orthophosphoric acid gel/ACTIVA) and brackets were bonded. A bond strength test and microleakage test were applied. A fluoride release test was applied after 60 days for the TXT and ACTIVA group. To evaluate cytotoxicity and cell migration, a cell viability and scratch migration assay were done for each group. p values < 0.05 were considered significant. Regarding bond strength and microleakage test, no significant differences were found between TSEP/TXT and TSEP/ACTIVA. At 6.4 pH, ACTIVA showed a higher degree of fluoride ion release, which increased with acid pH (3.5), with a maximum fluoride secretion at 30 days. MTT assay revealed that TXT reduces the viability of gingival cells with significant differences (p < 0.001) compared to the untreated cells (control group). ACTIVA provides optimal adhesive and microfiltration properties, releases substantial amounts of fluoride ions in both acid and neutral media, and its biocompatibility is greater than that of traditional composite resin adhesive systems.


Sign in / Sign up

Export Citation Format

Share Document