Rheological studies of the polymerization of elastomeric impression materials. III. Dynamic stress relaxation modulus

1982 ◽  
Vol 16 (4) ◽  
pp. 345-357 ◽  
Author(s):  
Wayne D. Cook
2002 ◽  
Vol 16 (17n18) ◽  
pp. 2655-2661
Author(s):  
W. H. LI ◽  
G. CHEN ◽  
S. H. YEO ◽  
H. DU

In this paper, the experimental and modeling study and analysis of the stress relaxation characteristics of magnetorheological (MR) fluids under step shear are presented. The experiments are carried out using a rheometer with parallel-plate geometry. The applied strain varies from 0.01% to 100%, covering both the pre-yield and post-yield regimes. The effects of step strain, field strength, and temperature on the stress modulus are addressed. For small step strain ranges, the stress relaxation modulus G(t,γ) is independent of step strain, where MR fluids behave as linear viscoelastic solids. For large step strain ranges, the stress relaxation modulus decreases gradually with increasing step strain. Morever, the stress relaxation modulus G(t,γ) was found to obey time-strain factorability. That is, G(t,γ) can be represented as the product of a linear stress relaxation G(t) and a strain-dependent damping function h(γ). The linear stress relaxation modulus is represented as a three-parameter solid viscoelastic model, and the damping function h(γ) has a sigmoidal form with two parameters. The comparison between the experimental results and the model-predicted values indicates that this model can accurately describe the relaxation behavior of MR fluids under step strains.


1997 ◽  
Vol 119 (3) ◽  
pp. 262-265 ◽  
Author(s):  
S. R. White ◽  
A. B. Hartman

Little experimental work has been done to characterize how the viscoelastic properties of composite material matrix resins develop during cure. In this paper, the results of a series of creep tests carried out on 3501–6 epoxy resin, a common epoxy matrix material for graphite/epoxy composites, at several different cure states is reported. Beam specimens were isothermally cured at increasing cure temperatures to obtain a range of degrees of cure from 0.66 to 0.99. These specimens were then tested in three-point bending to obtain creep compliance over a wide temperature range. The master curves and shift functions for each degree of cure case were obtained by time-temperature superposition. A numerical technique and direct inversion were used to calculate the stress relaxation modulus master curves from the creep compliance master curves. Direct inversion was shown to be adequate for fully cured specimens, however it underpredicts the relaxation modulus and the transition for partially cured specimens. Correlations with experimental stress relaxation data from Kim and White (1996) showed that reasonably accurate results can be obtained by creep testing followed by numerical conversion using the Hopkins-Hamming method.


1982 ◽  
Vol 55 (1) ◽  
pp. 62-65
Author(s):  
W. Batsberg ◽  
O. Kramer

Abstract The experimental result, that the equilibrium force is nearly equal to the pseudoequilibrium force immediately prior to quenching and irradiation, allows the following conclusions: (1) Chain scission during crosslinking is not a serious problem. (2) The network of highly entangled linear chains is effectively at elastic equilibrium immediately prior to crosslinking in the strained state. This would not be the case if the entangled structure remained untrapped. (3) The effect of chain entangling in tightly crosslinked elastomers is large, also at elastic equilibrium. In fact, it is almost quantitatively equal to the pseudo-equilibrium stress relaxation modulus of the uncrosslinked linear polymer. This result is in agreement with the results from the Langley and the two-network methods.


2021 ◽  
Vol 1965 (1) ◽  
pp. 012023
Author(s):  
Zhang Jian-bin ◽  
Guo Lei ◽  
Li Guang-hua ◽  
Lu Bing-ju ◽  
Cheng Dong

1986 ◽  
Vol 59 (5) ◽  
pp. 282-289
Author(s):  
Kunihiko FUJIMOTO ◽  
Hidehiko AKIMOTO

2013 ◽  
Vol 303-306 ◽  
pp. 2902-2907 ◽  
Author(s):  
Nian Qin Wang ◽  
Xiao Ling Liu ◽  
Bo Han ◽  
Bo Tao Liu

Lishi loess is an important component of loess slope. To explore the structure and strength change characteristics of Lishi loess caused by shock (vibration) action, and to reveal the mechanism of loess slope catastrophe, the dynamic triaxial test was performed by using equivalent sine wave under strain controlling. The results show that:① There is an obvious stress relaxation phenomenon during the same cyclic loading test, the degree decreases with the increasing of dynamic strain and confining pressure. And the influence of dynamic strain variation on stress relaxation degree is less under high confining pressure than under low confining pressure;② Under a confining pressure of 40kPa, within 1% strain ranges, the needed dynamic stress to reach the specified strain is just 0.01kN, and the peak stress decreases with the augmentation of dynamic strain, when peak stress increases to 0.204kN, the sample is destructed; Under a confining pressure of 90kPa, soil radial particles are closely spaced, within 2% strain ranges also only a dynamic stress of 0.01kN is needed to reach the specified strain, and with the increase of dynamic strain, the samples are destructed when dynamic strain increases to 0.267kN. The dynamic failure stress of Lishi loess increases gradually with the increase of confining pressure, and the linear regression equation is бd=0.0011б3+0.1590, the correlation coefficient is 0.9944. ③According to Mohr-Coulomb failure criterion, the strength parameters of Lishi loess in somewhere of the north of shaanxi are C=30.33kPa,φ=14°. Under the dynamic shearing action, the dynamic effective strength parameters are obviously less than static effective strength parameters, this indicates that the soil consolidation effect reduced and the particles displaced and occluded each other.


Author(s):  
Kevin L. Troyer ◽  
Christian M. Puttlitz

Connective soft tissues exhibit time-dependent, or viscoelastic, behavior. In order to characterize this behavior, stress relaxation experiments can be performed to determine the tissue’s relaxation modulus. Theoretically, the relaxation modulus describes the stress relaxation behavior of the tissue in response to an instantaneous (step) application of strain. However, a step increase in strain is experimentally impossible and a pure ramp load is intractable due to the inertial limitations of the testing device. Even small deviations from an instantaneous strain application may cause significant errors in the determination of the tissue’s relaxation modulus.


1977 ◽  
Vol 50 (5) ◽  
pp. 895-905 ◽  
Author(s):  
J. G. Curro ◽  
E. A. Salazar

Abstract In this paper we have developed a method whereby physical and chemical relaxation processes can be distinguished, using stress relaxation experiments as a function of temperature. We assumed that there exists some temperature range above the glass transition temperature over which the chemical effects can be neglected for the time scale of the experiments. The data in this low temperature range were then used to determine the WLF constants and other physical relaxation parameters. The physical component of the stress relaxation could then be subtracted from high temperature experiments in order to extract chemical kinetic information. Based on certain reasonable assumptions, an equation was developed for the relaxation modulus of a chemically reacting system. This equation could be used to determine the time dependence of the crosslink density, or conversely could be used to predict the long-term relaxation modulus from an assumed kinetic mechanism. These calculations were demonstrated for ethylene-propylene and butyl elastomers.


Sign in / Sign up

Export Citation Format

Share Document