Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application

2010 ◽  
Vol 95A (3) ◽  
pp. 870-881 ◽  
Author(s):  
Kuihua Zhang ◽  
Yongfang Qian ◽  
Hongsheng Wang ◽  
Linpeng Fan ◽  
Chen Huang ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Fatemeh Roozbahani ◽  
Naznin Sultana ◽  
Ahmad Fauzi Ismail ◽  
Hamed Nouparvar

Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.


2021 ◽  
pp. 51471
Author(s):  
Ebrahim Behtouei ◽  
Mojgan Zandi ◽  
Fahimeh Askari ◽  
Hamed Daemi ◽  
Soheila Zamanlui ◽  
...  

2016 ◽  
Vol 872 ◽  
pp. 261-265 ◽  
Author(s):  
Wassanai Wattanutchariya ◽  
Atitaya Oonjai ◽  
Kittiya Thunsiri

This study reports the effects of the mixing ratio of hydroxyapatite (HA), silk fibroin (SF) and chitosan (CS) on the physical properties of the scaffold used in tissue engineering. Experimental design based on mixture design was implemented to investigate the degradation rate of the scaffolds fabricated from various ratios of those biomaterials. Furthermore, pore morphology and pore size were evaluated to confirm the compatibility of the scaffold topography for cell growth and adhesion. The results from the study showed that all ratios, except pure HA solution, can be fabricated into porous scaffolds with an interconnected pore structure and appropriate pore sizes to allow all types of human cells to pass through. Furthermore, the scaffold solutions with high CS ratio resulted in a uniform pore structure and lower rates of biodegradation. Therefore, CS is recommended as the main structure because it provides the highest resistance to biodegradation. The scaffolds from various ratios may be applied for different tissue replacements in the near future.


Sign in / Sign up

Export Citation Format

Share Document